-
公开(公告)号:CN108659237A
公开(公告)日:2018-10-16
申请号:CN201810497245.8
申请日:2018-05-22
Applicant: 中南林业科技大学
IPC: C08J3/075 , C08B15/02 , C08F251/02 , C08F220/28 , C08G73/02 , C08G73/06 , G01K7/16
Abstract: 本发明公开了一种导电性能随温度调谐的纳米纤维复合水凝胶,至少由5~10质量份的2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯、5~10质量份的甲氧基聚乙二醇甲基丙烯酸酯和0.5~8质量份纳米纤维素胶体加热聚合后,再与0.1~2质量份的导电高分子单体聚合得到。该纳米纤维复合水凝胶,在纳米纤维增强温敏型水凝胶基体上合成导电高分子聚合物,同时具备灵敏的温度敏感性能和优异的导电性能,其导电性能可随温度变化而变化,且由于纳米纤维及刚性导电高分子的引入,增加了水凝胶的力学强度;此外,水凝胶可变的形状、尺寸可以满足较多场合的应用需求,在柔性智能材料、肌肉仿生等领域具有广阔的应用前景。
-
公开(公告)号:CN108630462B
公开(公告)日:2020-05-22
申请号:CN201810496063.9
申请日:2018-05-22
Applicant: 中南林业科技大学
Abstract: 本发明公开了一种纳米纤维基一体化薄膜超级电容器的制备方法,包括以下步骤:将聚乙烯醇(PVA)的水溶液加入纤维素纳米纤维(CNFs)的水分散液中并分散均匀,得到PVA与CNFs的混合液;取异丙醇加入PVA与CNFs的混合液,搅拌均匀后,将混合液通过冻融法得到高离子电导率纳米纤维基水凝胶膜;将导电材料与PVA混合均匀后涂覆在纳米纤维基水凝胶膜两侧,再次通过冻融法形成导电凝胶层,制得纳米纤维基一体化薄膜超级电容器。通过该方法制备得到的一体化薄膜超级电容器具有良好的生物相容性、柔韧性与优异的储电性能,可应用于可穿戴储能器件领域。
-
公开(公告)号:CN108659237B
公开(公告)日:2021-01-26
申请号:CN201810497245.8
申请日:2018-05-22
Applicant: 中南林业科技大学
IPC: C08J3/075 , C08B15/02 , C08F251/02 , C08F220/28 , C08G73/02 , C08G73/06 , G01K7/16
Abstract: 本发明公开了一种导电性能随温度调谐的纳米纤维复合水凝胶,至少由5~10质量份的2‑甲基‑2‑丙烯酸‑2‑(2‑甲氧基乙氧基)乙酯、5~10质量份的甲氧基聚乙二醇甲基丙烯酸酯和0.5~8质量份纳米纤维素胶体加热聚合后,再与0.1~2质量份的导电高分子单体聚合得到。该纳米纤维复合水凝胶,在纳米纤维增强温敏型水凝胶基体上合成导电高分子聚合物,同时具备灵敏的温度敏感性能和优异的导电性能,其导电性能可随温度变化而变化,且由于纳米纤维及刚性导电高分子的引入,增加了水凝胶的力学强度;此外,水凝胶可变的形状、尺寸可以满足较多场合的应用需求,在柔性智能材料、肌肉仿生等领域具有广阔的应用前景。
-
公开(公告)号:CN108630462A
公开(公告)日:2018-10-09
申请号:CN201810496063.9
申请日:2018-05-22
Applicant: 中南林业科技大学
Abstract: 本发明公开了一种纳米纤维基一体化薄膜超级电容器的制备方法,包括以下步骤:将聚乙烯醇(PVA)的水溶液加入纤维素纳米纤维(CNFs)的水分散液中并分散均匀,得到PVA与CNFs的混合液;取异丙醇加入PVA与CNFs的混合液,搅拌均匀后,将混合液通过冻融法得到高离子电导率纳米纤维基水凝胶膜;将导电材料与PVA混合均匀后涂覆在纳米纤维基水凝胶膜两侧,再次通过冻融法形成导电凝胶层,制得纳米纤维基一体化薄膜超级电容器。通过该方法制备得到的一体化薄膜超级电容器具有良好的生物相容性、柔韧性与优异的储电性能,可应用于可穿戴储能器件领域。
-
-
-