-
公开(公告)号:CN113314801A
公开(公告)日:2021-08-27
申请号:CN202110558191.3
申请日:2021-05-21
申请人: 中南大学
IPC分类号: H01M50/446 , H01M50/417 , H01M50/451 , H01M50/403 , H01M10/052
摘要: 本发明公开了一种缓释型功能性隔膜,包括作为支撑和框架结构的基材组分A和功能组分B;基材组分A包括但不限于聚烯烃及其衍生材料;功能组分B为无机碱金属盐或无机碱金属盐与聚合物的混合物;聚合物为能溶解无机碱金属盐或能与无机碱金属盐发生络合的聚合物材料。还公开了该隔膜的制备方法和锂电池。本发明的离子缓释型功能性隔膜兼备良好的电解液亲和性、电解液离子传导率、良好的热稳定性、结构稳定性和电化学稳定性,具备优异的抑制锂枝晶生长的能力,并稳定锂负极沉积,能有效提高锂电池的循环寿命。
-
公开(公告)号:CN113314801B
公开(公告)日:2022-08-30
申请号:CN202110558191.3
申请日:2021-05-21
申请人: 中南大学
IPC分类号: H01M50/446 , H01M50/417 , H01M50/451 , H01M50/403 , H01M10/052
摘要: 本发明公开了一种缓释型功能性隔膜,包括作为支撑和框架结构的基材组分A和功能组分B;基材组分A包括但不限于聚烯烃及其衍生材料;功能组分B为无机碱金属盐或无机碱金属盐与聚合物的混合物;聚合物为能溶解无机碱金属盐或能与无机碱金属盐发生络合的聚合物材料。还公开了该隔膜的制备方法和锂电池。本发明的离子缓释型功能性隔膜兼备良好的电解液亲和性、电解液离子传导率、良好的热稳定性、结构稳定性和电化学稳定性,具备优异的抑制锂枝晶生长的能力,并稳定锂负极沉积,能有效提高锂电池的循环寿命。
-
公开(公告)号:CN114284567B
公开(公告)日:2024-05-10
申请号:CN202111640721.5
申请日:2021-12-29
申请人: 中南大学 , 广东博力威科技股份有限公司
IPC分类号: H01M10/058 , H01M10/052 , H01M4/13 , H01M4/62 , H01M4/66 , H01M4/70
摘要: 本发明提供了一种高能量密度无负极锂金属电池制备方法,包括制备含有富锂材料的正极片;制备负极侧集流体并进行表面修饰;将得到的正极片、负极侧集流体与隔膜组装,添加电解液后,经过活化处理得到无负极锂金属电池。本发明在正极侧添加富锂材料作为锂源,利用富锂材料本身首次充放电循环过程库伦效率低、即不可逆脱锂容量高的特点,可有效弥补后续循环过程中负极侧的不可逆锂损失,延长电池循环寿命,同时富锂材料能够有效提高正极活性物质的克容量发挥,另外富锂材料的添加质量低于传统锂离子电池中负极活性物质质量,质量的减少必然能提升器件的能量密度。
-
公开(公告)号:CN114284567A
公开(公告)日:2022-04-05
申请号:CN202111640721.5
申请日:2021-12-29
申请人: 中南大学 , 广东博力威科技股份有限公司
IPC分类号: H01M10/058 , H01M10/052 , H01M4/13 , H01M4/62 , H01M4/66 , H01M4/70
摘要: 本发明提供了一种高能量密度无负极锂金属电池制备方法,包括制备含有富锂材料的正极片;制备负极侧集流体并进行表面修饰;将得到的正极片、负极侧集流体与隔膜组装,添加电解液后,经过活化处理得到无负极锂金属电池。本发明在正极侧添加富锂材料作为锂源,利用富锂材料本身首次充放电循环过程库伦效率低、即不可逆脱锂容量高的特点,可有效弥补后续循环过程中负极侧的不可逆锂损失,延长电池循环寿命,同时富锂材料能够有效提高正极活性物质的克容量发挥,另外富锂材料的添加质量低于传统锂离子电池中负极活性物质质量,质量的减少必然能提升器件的能量密度。
-
公开(公告)号:CN114335686A
公开(公告)日:2022-04-12
申请号:CN202111640605.3
申请日:2021-12-29
申请人: 中南大学 , 广东博力威科技股份有限公司
IPC分类号: H01M10/0525 , H01M10/058 , H01M4/131
摘要: 本发明提供了一种基于双功能LiMnO2的无负极锂金属电池制备方法,包括制备LiMnO2正极片;制备负极侧集流体;电解液配制及组分调控;将正极片、负极侧集流体与隔膜组装,添加电解液后,经过活化处理得到无负极锂金属电池。正极片采用的双功能LiMnO2在充放电过程中发生相变,具有充电比容量高,库伦效率低的材料特性,因而可以将LiMnO2材料包含的锂分为两部分进行充分利用,其中发生相变而导致的不可回嵌的锂能够在负极侧集流体沉积,用于弥补后续循环过程中负极侧的不可逆锂损失,延长循环寿命,而相变发生后回嵌的锂则可以在正极材料中继续进行电池循环,提升了无负极锂金属电池的循环寿命。
-
-
-
-