基于深度卷积神经网络的违禁物品标识方法

    公开(公告)号:CN109948412A

    公开(公告)日:2019-06-28

    申请号:CN201811608398.1

    申请日:2018-12-27

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于深度卷积神经网络的违禁物品标识方法,搭建一个具有三层Inception模块和一层BP神经网络的深度卷积神经网络。以违禁物品样本数据利用SGD随机梯度下降对三个Inception模块进行训练,获取违禁物品样本数据的高阶抽象特征,再通过BP对深度卷积神经网络参数进行优化,从而完成深度卷积神经网络的训练。将训练好的深度卷积神经网络应用到当前违禁物品样本数据,通过输出Softmax层便可获得违禁物品的种类。本发明可以识别各类不同有特定形状的违禁物品,提高安检的安全性。

    基于深度卷积神经网络的违禁物品标识方法

    公开(公告)号:CN109948412B

    公开(公告)日:2022-09-16

    申请号:CN201811608398.1

    申请日:2018-12-27

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于深度卷积神经网络的违禁物品标识方法,搭建一个具有三层Inception模块和一层BP神经网络的深度卷积神经网络。以违禁物品样本数据利用SGD随机梯度下降对三个Inception模块进行训练,获取违禁物品样本数据的高阶抽象特征,再通过BP对深度卷积神经网络参数进行优化,从而完成深度卷积神经网络的训练。将训练好的深度卷积神经网络应用到当前违禁物品样本数据,通过输出Softmax层便可获得违禁物品的种类。本发明可以识别各类不同有特定形状的违禁物品,提高安检的安全性。

Patent Agency Ranking