一种儿童伴学机器人及其早教系统自学习方法

    公开(公告)号:CN109559576B

    公开(公告)日:2020-07-28

    申请号:CN201811367002.9

    申请日:2018-11-16

    Applicant: 中南大学

    Abstract: 本发明公开了一种儿童伴学机器人及其早教系统自学习方法,自学习方法包括:步骤A10,训练卷积神经网络;步骤A20,采用卷积神经网络对输入的图像提取特征向量;步骤A30,采用乘积量化技术对特征向量分组量化;步骤A40,根据Imagenet数据集生成基准字母表;步骤A50,获取未知的新事物的图像和类别,提取新事物图像的特征向量并分组量化,并在基准字母表中查找匹配的新事物字符串;在联想记忆模型中将新事物字符串与类别匹配连接,实现将新事物学习到早教系统中;步骤A60,获取待识别事物的图像,早教系统识别得到待识别事物的类别。本发明可以实现与儿童一起学习新知识,共同竞赛,提高儿童学习的乐趣。

    一种儿童伴学机器人及其早教系统自学习方法

    公开(公告)号:CN109559576A

    公开(公告)日:2019-04-02

    申请号:CN201811367002.9

    申请日:2018-11-16

    Applicant: 中南大学

    CPC classification number: G09B5/065 G06N3/0454

    Abstract: 本发明公开了一种儿童伴学机器人及其早教系统自学习方法,自学习方法包括:步骤A10,训练卷积神经网络;步骤A20,采用卷积神经网络对输入的图像提取特征向量;步骤A30,采用乘积量化技术对特征向量分组量化;步骤A40,根据Imagenet数据集生成基准字母表;步骤A50,获取未知的新事物的图像和类别,提取新事物图像的特征向量并分组量化,并在基准字母表中查找匹配的新事物字符串;在联想记忆模型中将新事物字符串与类别匹配连接,实现将新事物学习到早教系统中;步骤A60,获取待识别事物的图像,早教系统识别得到待识别事物的类别。本发明可以实现与儿童一起学习新知识,共同竞赛,提高儿童学习的乐趣。

Patent Agency Ranking