基于子领域适配字典学习的工业系统故障诊断方法和系统

    公开(公告)号:CN115129029A

    公开(公告)日:2022-09-30

    申请号:CN202210765643.X

    申请日:2022-07-01

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于子领域适配字典学习的工业系统故障诊断方法和系统,方法:S1,利用具有标签的源域工况数据初始训练故障分类器,使用初始训练得到的故障分类器对目标域工况数据初始化伪标签;S2,利用源域工况数据和目标域工况数据,构建目标函数进行迁移字典学习;所述目标函数引入LMMD距离度量源域和目标域之间的子领域差异;S3,利用源域工况数据的稀疏表示重新训练故障分类器,并对目标域工况数据的稀疏表示进行分类概率预测,使用分类预测概率值更新目标域工况数据的伪标签;S4,重复S2和S3,直到迭代结束,此时的目标域伪标签中预测概率最大的类别即为对目标域工况下的故障诊断结果。本发明能够准确的进行工业过程跨域故障诊断。

    基于子领域适配字典学习的工业系统故障诊断方法和系统

    公开(公告)号:CN115129029B

    公开(公告)日:2024-07-16

    申请号:CN202210765643.X

    申请日:2022-07-01

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于子领域适配字典学习的工业系统故障诊断方法和系统,方法:S1,利用具有标签的源域工况数据初始训练故障分类器,使用初始训练得到的故障分类器对目标域工况数据初始化伪标签;S2,利用源域工况数据和目标域工况数据,构建目标函数进行迁移字典学习;所述目标函数引入LMMD距离度量源域和目标域之间的子领域差异;S3,利用源域工况数据的稀疏表示重新训练故障分类器,并对目标域工况数据的稀疏表示进行分类概率预测,使用分类预测概率值更新目标域工况数据的伪标签;S4,重复S2和S3,直到迭代结束,此时的目标域伪标签中预测概率最大的类别即为对目标域工况下的故障诊断结果。本发明能够准确的进行工业过程跨域故障诊断。

Patent Agency Ranking