-
公开(公告)号:CN116258420B
公开(公告)日:2023-08-01
申请号:CN202310526625.0
申请日:2023-05-11
Applicant: 中南大学
IPC: G06Q10/0639 , G06N20/20
Abstract: 本申请适用于联邦学习及数字孪生技术领域,提供了一种产品质量检测方法、装置、终端设备及介质。包括采集目标产品的工序组成数据;计算每个边缘节点的权重;根据所有边缘节点的权重,得到最大设备连接数,并对所有边缘节点进行分组,得到多个边缘节点分组;根据每个边缘节点的可靠性和边缘节点的权重,确定边缘节点分组的领导者节点,并通过领导者节点,将设备信息和产品信息存储到区块链;每个工业设备的学习质量确定联邦学习设备,并根据设备信息和产品信息,进行本地模型训练,得到本地数字孪生模型;计算本地数字孪生模型的全局残差,得到全局数字孪生模型;利用全局数字孪生模型进行质量检测。本申请能提高产品质量检测的准确性。
-
公开(公告)号:CN116306323B
公开(公告)日:2023-08-08
申请号:CN202310566397.X
申请日:2023-05-19
Applicant: 中南大学
Abstract: 本申请适用于联邦学习和数字孪生技术领域,提供了一种数字孪生模型的确定方法、装置、终端设备及介质,通过构建初始数字孪生模型,并初始化模型参数,得到初始数字孪生模型参数;针对每个工业设备,根据初始数字孪生模型参数,构建初始本地模型,并对初始本地模型进行训练,得到最终本地模型;根据最终本地模型的模型参数,得到每个工业设备的全局得分,并根据全局得分,确定联邦工业设备;对所有联邦工业设备的最终本地模型的模型参数进行聚合,得到初始全局模型;基于强化学习,对初始全局模型中的网络结构进行更新,得到最终全局模型;基于联邦学习,得到目标任务对应的最终数字孪生模型。本申请能提高数字孪生模型的准确性。
-
公开(公告)号:CN116306323A
公开(公告)日:2023-06-23
申请号:CN202310566397.X
申请日:2023-05-19
Applicant: 中南大学
Abstract: 本申请适用于联邦学习和数字孪生技术领域,提供了一种数字孪生模型的确定方法、装置、终端设备及介质,通过构建初始数字孪生模型,并初始化模型参数,得到初始数字孪生模型参数;针对每个工业设备,根据初始数字孪生模型参数,构建初始本地模型,并对初始本地模型进行训练,得到最终本地模型;根据最终本地模型的模型参数,得到每个工业设备的全局得分,并根据全局得分,确定联邦工业设备;对所有联邦工业设备的最终本地模型的模型参数进行聚合,得到初始全局模型;基于强化学习,对初始全局模型中的网络结构进行更新,得到最终全局模型;基于联邦学习,得到目标任务对应的最终数字孪生模型。本申请能提高数字孪生模型的准确性。
-
公开(公告)号:CN116258420A
公开(公告)日:2023-06-13
申请号:CN202310526625.0
申请日:2023-05-11
Applicant: 中南大学
IPC: G06Q10/0639 , G06N20/20
Abstract: 本申请适用于联邦学习及数字孪生技术领域,提供了一种产品质量检测方法、装置、终端设备及介质。包括采集目标产品的工序组成数据;计算每个边缘节点的权重;根据所有边缘节点的权重,得到最大设备连接数,并对所有边缘节点进行分组,得到多个边缘节点分组;根据每个边缘节点的可靠性和边缘节点的权重,确定边缘节点分组的领导者节点,并通过领导者节点,将设备信息和产品信息存储到区块链;每个工业设备的学习质量确定联邦学习设备,并根据设备信息和产品信息,进行本地模型训练,得到本地数字孪生模型;计算本地数字孪生模型的全局残差,得到全局数字孪生模型;利用全局数字孪生模型进行质量检测。本申请能提高产品质量检测的准确性。
-
-
-