-
公开(公告)号:CN114740385A
公开(公告)日:2022-07-12
申请号:CN202210212196.5
申请日:2022-03-04
Applicant: 中南大学
IPC: G01R31/387 , G01R31/367
Abstract: 本发明公开了一种自适应的锂离子电池荷电状态估计方法,其方法包括以下步骤:建立锂离子电池二阶RC等效电路模型,并离线辨识二阶RC等效电路模型的参数;拟合锂离子电池开路电压与荷电状态之间的相关性曲线;通过动态应力测试对模型的准确性进行验证;根据含遗忘因子的递归最小二乘法对模型参数进行在线辨识;使用自适应扩展卡尔曼粒子滤波算法,确定锂离子电池荷电状态的估计值。本发明通过输出多个粒子的加权平均值,提高了荷电状态估计结果的稳定性和准确性;通过自适应扩展卡尔曼滤波算法对粒子重要性进行采样,在准确估计锂离子电池荷电状态的同时,提高了算法的运算效率。
-
公开(公告)号:CN114740385B
公开(公告)日:2024-12-06
申请号:CN202210212196.5
申请日:2022-03-04
Applicant: 中南大学
IPC: G01R31/387 , G01R31/367
Abstract: 本发明公开了一种自适应的锂离子电池荷电状态估计方法,其方法包括以下步骤:建立锂离子电池二阶RC等效电路模型,并离线辨识二阶RC等效电路模型的参数;拟合锂离子电池开路电压与荷电状态之间的相关性曲线;通过动态应力测试对模型的准确性进行验证;根据含遗忘因子的递归最小二乘法对模型参数进行在线辨识;使用自适应扩展卡尔曼粒子滤波算法,确定锂离子电池荷电状态的估计值。本发明通过输出多个粒子的加权平均值,提高了荷电状态估计结果的稳定性和准确性;通过自适应扩展卡尔曼滤波算法对粒子重要性进行采样,在准确估计锂离子电池荷电状态的同时,提高了算法的运算效率。
-