多尺度含能微球连续化制备装置及方法

    公开(公告)号:CN115286473B

    公开(公告)日:2024-01-12

    申请号:CN202211147910.3

    申请日:2022-09-21

    Applicant: 中北大学

    Abstract: 本发明属于含能材料领域,具体涉及一种管道连续流控辅助制备多尺度含能微球的装置及方法。管道连续流控辅助制备多尺度含能微球的装置由连续相流体控制单元、循环管路、炸药浆料注入单元;加热系统;壳体、控温装置、成品收集容器和三通接头组成。含能微球制备过程包括连续相流体的配制及预循环、炸药悬浮浆料的配制、炸药悬浮浆料的注入、含能微球在管道中固化成型和成品收集及后处理五个步骤。本发明将管道反应原理和水悬浮造粒工艺相结合,解决了传统釜式工艺无法连续化的弊端,可以实现微米量级至毫米量级多尺度造型粉微球颗粒的连续化制备,成品具有球形度高、流散性好和粒径分布窄等优点。

    一种基于3D打印的微型自毁器件及其一体化组装成型方法

    公开(公告)号:CN118099100B

    公开(公告)日:2025-05-23

    申请号:CN202410065365.6

    申请日:2024-01-17

    Applicant: 中北大学

    Abstract: 本发明涉及自毁伤技术领域,具体涉及一种基于3D打印的微型自毁器件及其一体化组装成型方法;使用增材制造技术实现具有自毁能力的微型含能器件集成;其中,内置含能材料为Al基高产气型纳米铝热剂,所述纳米铝热剂以Al纳米颗粒为燃料、以纳米化碱金属盐为氧化剂、氟橡胶为粘结剂,各原料的质量份配比为:燃料10~60份,氧化剂40~90份,粘结剂3‑20份,通过氧化还原反应产生输出压力达成定向毁伤目的;一体化制造的自毁器件体积在0.7~5cm3内,质量在1.5~4.5g之间,响应时间在1ms以内,具备微型、轻量化、响应迅速等优势,可实现复杂场景下的多种瞬态毁伤响应。

    一种可自修复的高能支化粘结剂及其制备和应用

    公开(公告)号:CN116769444A

    公开(公告)日:2023-09-19

    申请号:CN202310903334.9

    申请日:2023-07-22

    Applicant: 中北大学

    Abstract: 本发明涉及高能自修复聚合物及其制备和应用领域,具体涉及一种可自修复的高能支化粘结剂及其制备和应用;将支化高能聚醚粘结剂溶解于溶剂中,然后与过量的异氰酸酯和固化催化剂搅拌发生反应,制备形成预聚体,然后加入含有二硫键的扩链剂继续反应,得到的目标产品可以在中温的条件下发生自修复反应。相比较现有技术,本发明创新性地将支化高能聚醚与可逆动态键相结合,同时依靠结构中的氢键相互作用,使复合材料在温和的条件下可实现快速愈合。提供的自愈合高能粘结剂制备方法简单、实用性强,有望提高含能复合材料的能量和装药密度。

    多尺度含能微球连续化制备装置及方法

    公开(公告)号:CN115286473A

    公开(公告)日:2022-11-04

    申请号:CN202211147910.3

    申请日:2022-09-21

    Applicant: 中北大学

    Abstract: 本发明属于含能材料领域,具体涉及一种管道连续流控辅助制备多尺度含能微球的装置及方法。管道连续流控辅助制备多尺度含能微球的装置由连续相流体控制单元、循环管路、炸药浆料注入单元;加热系统;壳体、控温装置、成品收集容器和三通接头组成。含能微球制备过程包括连续相流体的配制及预循环、炸药悬浮浆料的配制、炸药悬浮浆料的注入、含能微球在管道中固化成型和成品收集及后处理五个步骤。本发明将管道反应原理和水悬浮造粒工艺相结合,解决了传统釜式工艺无法连续化的弊端,可以实现微米量级至毫米量级多尺度造型粉微球颗粒的连续化制备,成品具有球形度高、流散性好和粒径分布窄等优点。

    一种基于高压微射流技术制备超细炸药的方法

    公开(公告)号:CN119528653A

    公开(公告)日:2025-02-28

    申请号:CN202411723604.9

    申请日:2024-11-28

    Applicant: 中北大学

    Abstract: 本发明涉及含能材料制备技术领域,具体涉及一种基于高压微射流技术制备超细炸药的方法;包括以下步骤:①炸药颗粒悬浊液的制备;②高压微射流细化处理;③超细炸药的过滤与干燥;本发明将高压微射流技术引入炸药的细化,借助炸药颗粒悬浊液高速通过微孔道时产生的剪切、撞击、摩擦和空化等作用,使炸药颗粒粉碎并均匀分散,从而制备出超细炸药。本发明制备方法简单可靠,重复性好,安全性高,传热、传质效率高,得到的炸药颗粒粒径分布窄,且制备过程绿色环保,不会产生污染物,易于产业放大。

    一种高品质球形HATO炸药晶体的制备与粒度调控方法

    公开(公告)号:CN116239429A

    公开(公告)日:2023-06-09

    申请号:CN202310210541.6

    申请日:2023-03-06

    Applicant: 中北大学

    Abstract: 本发明属于含能材料制备技术领域,具体涉及一种高品质球形HATO炸药晶体的制备与粒度调控方法;包括以下步骤:(1)侵蚀溶剂/炸药晶体悬浮体系的配置;(2)高品质球形HATO炸药晶体的制备与粒度调控;(3)球形HATO炸药晶体的过滤与干燥。本发明可实现高品质球形HATO炸药晶体的制备与粒度调控,所得HATO晶体粒度均一,球形化程度极高,晶体形态规整,表面光滑,流散性好;所涉及的球形化工艺安全性高,简单易于控制,结晶母液可循环使用,有利于降低成本减少污染,可用于工业化批量生产。

    一种高力学性能的自愈合聚氨酯薄膜及其制备方法与应用

    公开(公告)号:CN115850952A

    公开(公告)日:2023-03-28

    申请号:CN202211668520.0

    申请日:2022-12-24

    Applicant: 中北大学

    Abstract: 本发明具体涉及一种高力学性能的自愈合聚氨酯薄膜及其制备方法与应用;由聚己内酯二醇中的羟基与过量的异佛尔酮二异氰酸酯中的异氰酸酯键发生反应,生成带有‑NCO基的预聚体,然后加入扩链剂双(2‑氨基苯基)二硫,剩余的异氰酸酯键与双(2‑氨基苯基)二硫中的羟基继续进行扩链反应,最终得到具有愈合性能的聚氨酯;本发明提供的聚氨酯利用分子流动性和二硫键的可逆动态反应,通过控制“微相分离”以调节聚氨酯中的软段与硬段的分离程度,进一步平衡材料的力学性能和自修复能力,以获得高力学性能的自修复聚氨酯。本发明提供的自愈合聚氨酯制备方法简单且合成时间短,降低了产品成本,并且可用于各种领域,如表面保护涂层、医疗材料和航空航天等。

    一种可自愈合的高聚物黏结炸药及其制备方法

    公开(公告)号:CN115819159A

    公开(公告)日:2023-03-21

    申请号:CN202310095278.0

    申请日:2023-02-10

    Applicant: 中北大学

    Abstract: 本发明涉及含能复合材料制备技术领域,具体涉及一种可自愈合的高聚物黏结炸药及其制备方法;将聚醚二元醇与过量的二异氰酸酯反应,异氰酸酯指数为1~1.1,以二丁基锡二月桂酸酯为催化剂,先进行反应生成带有‑NCO的预聚体,然后加入二硫化物继续反应,最终得到的聚氨酯结构可以在室温条件下发生可逆断裂并自行修复。利用水悬浮法将该自愈合聚氨酯与含能化合物进行复合,通过压装成型得到具有自修复特性的高聚物黏结炸药。本发明提供的高聚物黏结炸药制备方法简单、实用性强,借助二硫键的可逆动态反应、分子间氢键相互作用以及分子链流动性的耦合作用,在温和的条件下可实现快速愈合,有望提高炸药的力学性能和抗老化性能。

    一种基于3D打印的微型自毁器件及其一体化组装成型方法

    公开(公告)号:CN118099100A

    公开(公告)日:2024-05-28

    申请号:CN202410065365.6

    申请日:2024-01-17

    Applicant: 中北大学

    Abstract: 本发明涉及自毁伤技术领域,具体涉及一种基于3D打印的微型自毁器件及其一体化组装成型方法;使用增材制造技术实现具有自毁能力的微型含能器件集成;其中,内置含能材料为Al基高产气型纳米铝热剂,所述纳米铝热剂以Al纳米颗粒为燃料、以纳米化碱金属盐为氧化剂、氟橡胶为粘结剂,各原料的质量份配比为:燃料10~60份,氧化剂40~90份,粘结剂3‑20份,通过氧化还原反应产生输出压力达成定向毁伤目的;一体化制造的自毁器件体积在0.7~5cm3内,质量在1.5~4.5g之间,响应时间在1ms以内,具备微型、轻量化、响应迅速等优势,可实现复杂场景下的多种瞬态毁伤响应。

Patent Agency Ranking