一种用于胶质瘤SPECT-MRI图像融合的网络模型及方法

    公开(公告)号:CN115689961A

    公开(公告)日:2023-02-03

    申请号:CN202211370369.2

    申请日:2022-11-03

    Applicant: 中北大学

    Abstract: 本发明属于医学图像融合技术领域,公开了一种用于胶质瘤SPECT‑MRI图像融合的网络模型及方法。所述网络模型简称为DEFSD,通过分解专属特征和显著性掩膜来促进图像融合。具体为:先将RGB空间的源SPECT图像转换为YCbCr空间,再将Y通道的SPECT图像和MRI图像输入DEFSD,DEFSD结合属性向量和物体特征图,分别重建两幅源图像,并确定源图像的专属特征,同时,利用显著性掩码突出区域的特征;然后将经过训练的DEFSD输出的图像与Cb和Cr通道的SPECT图像一起被转换到RGB空间,获得最终的输出融合图像。在哈佛大学医学院公开的医学图像数据集上进行训练,实验结果表明,DEFSD可以产生包含大量各模态独有信息的融合图像,并且在病变区域具有明显的沟线特征,有利于早期胶质瘤诊断。

Patent Agency Ranking