一种光学复合金属纳米材料的制备方法和应用

    公开(公告)号:CN110823876B

    公开(公告)日:2022-06-28

    申请号:CN201911110246.3

    申请日:2019-11-14

    Applicant: 东南大学

    Abstract: 本发明公开一种光学复合金属纳米材料的制备方法和应用,该方法步骤为:先将壳聚糖、重金属盐、氢氧化钠、联吡啶钌和分散剂在室温下混合研磨,然后加入氯金酸/氯铂酸/氯钯酸溶液或其盐溶液继续研磨,直至产物颜色变为棕色,将产物离心洗涤即得XRuY光学复合金属纳米材料。本发明通过研磨制得的光学复合金属纳米材料尺寸较小且均一,制备过程耗时较少,该法可在室温下进行,不需要额外条件,简便、快速且环保;且本发明制备的光学复合金属纳米材料具有非常好的稳定性,发光效率显著增高、导电性能和生物相容性良好,可应用于电致化学发光生物传感器,作为电极修饰或标记材料,为生物分子的分析检测提供新途径。

    一种光学复合金属纳米材料的制备方法和应用

    公开(公告)号:CN110823876A

    公开(公告)日:2020-02-21

    申请号:CN201911110246.3

    申请日:2019-11-14

    Applicant: 东南大学

    Abstract: 本发明公开一种光学复合金属纳米材料的制备方法和应用,该方法步骤为:先将壳聚糖、重金属盐、氢氧化钠、联吡啶钌和分散剂在室温下混合研磨,然后加入氯金酸/氯铂酸/氯钯酸溶液或其盐溶液继续研磨,直至产物颜色变为棕色,将产物离心洗涤即得XRuY光学复合金属纳米材料。本发明通过研磨制得的光学复合金属纳米材料尺寸较小且均一,制备过程耗时较少,该法可在室温下进行,不需要额外条件,简便、快速且环保;且本发明制备的光学复合金属纳米材料具有非常好的稳定性,发光效率显著增高、导电性能和生物相容性良好,可应用于电致化学发光生物传感器,作为电极修饰或标记材料,为生物分子的分析检测提供新途径。

    一种光学金属基改性凝胶及其制备方法与应用

    公开(公告)号:CN113046075A

    公开(公告)日:2021-06-29

    申请号:CN202110331318.8

    申请日:2021-03-26

    Applicant: 东南大学

    Abstract: 本发明涉及光电材料制造领域,尤其是一种光学金属基改性凝胶及其制备方法与应用,现提出如下方案,制备方法包括将含金属X离子的盐溶液加入到经程序升温后的CNS溶液中恒温搅拌,CNS通过如下步骤合成:所述步骤包括先将g‑C3N4粉末分散在水中进行超声剥离,再经过离心、干燥获得CNS,所述g‑C3N4的通过如下步骤合成:所述步骤包括选择含有三嗪结构的化合物作为反应前驱体,煅烧获得g‑C3N4。本发明所提出的方法以及根据该方法制得的光学金属基改性凝胶的ECL强度高、成本低,光电效率高,具有稳定性好、比表面积大、电子传递速率快,其在光电子器件、标记材料、分子传感和生物医疗领域具有广泛的应用前景。

    一种光学金属基改性凝胶及其制备方法与应用

    公开(公告)号:CN113046075B

    公开(公告)日:2022-03-15

    申请号:CN202110331318.8

    申请日:2021-03-26

    Applicant: 东南大学

    Abstract: 本发明涉及光电材料制造领域,尤其是一种光学金属基改性凝胶及其制备方法与应用,现提出如下方案,制备方法包括将含金属X离子的盐溶液加入到经程序升温后的CNS溶液中恒温搅拌,CNS通过如下步骤合成:所述步骤包括先将g‑C3N4粉末分散在水中进行超声剥离,再经过离心、干燥获得CNS,所述g‑C3N4的通过如下步骤合成:所述步骤包括选择含有三嗪结构的化合物作为反应前驱体,煅烧获得g‑C3N4。本发明所提出的方法以及根据该方法制得的光学金属基改性凝胶的ECL强度高、成本低,光电效率高,具有稳定性好、比表面积大、电子传递速率快,其在光电子器件、标记材料、分子传感和生物医疗领域具有广泛的应用前景。

Patent Agency Ranking