一种基于车辆出行轨迹数据的信号控制子区划分方法

    公开(公告)号:CN110415523B

    公开(公告)日:2021-07-30

    申请号:CN201910746473.9

    申请日:2019-08-13

    Applicant: 东南大学

    Abstract: 本发明提供了一种基于车辆出行轨迹数据的信号控制子区划分方法,该方法包括S1根据车辆轨迹数据,计算一段时间内研究区域各交叉口对之间的平均OD流量并做归一化处理,基于此构建全连通无向加权图;S2用Newman算法对路网进行划分得到划分后的初始路网子区;S3计算路段双向平均密度;S4利用自适应尺度NJW算法将路网划分为多个控制子区;S5选取能得到最好评价指标的方案为较优的控制子区划分方案。本发明提升了初始路网子区内交叉口信号控制的协调性,为后续进一步面向区域门限控制子区划分做出了初始划分方案。

    一种基于车辆出行轨迹数据的信号控制子区划分方法

    公开(公告)号:CN110415523A

    公开(公告)日:2019-11-05

    申请号:CN201910746473.9

    申请日:2019-08-13

    Applicant: 东南大学

    Abstract: 本发明提供了一种基于车辆出行轨迹数据的信号控制子区划分方法,该方法包括S1根据车辆轨迹数据,计算一段时间内研究区域各交叉口对之间的平均OD流量并做归一化处理,基于此构建全连通无向加权图;S2用Newman算法对路网进行划分得到划分后的初始路网子区;S3计算路段双向平均密度;S4利用自适应尺度NJW算法将路网划分为多个控制子区;S5选取能得到最好评价指标的方案为较优的控制子区划分方案。本发明提升了初始路网子区内交叉口信号控制的协调性,为后续进一步面向区域门限控制子区划分做出了初始划分方案。

    基于高斯混合模型的信号交叉口饱和车头时距估计方法

    公开(公告)号:CN110070734B

    公开(公告)日:2022-01-28

    申请号:CN201910397787.2

    申请日:2019-05-14

    Applicant: 东南大学

    Abstract: 本发明提供一种基于高斯混合模型的信号交叉口饱和车头时距估计方法。主要解决的技术问题是:利用车辆号牌数据,基于高斯混合模型,提出一种完全数据驱动的信号交叉口饱和车头时距估计方法。根据采集的信号交叉口号牌数据,分车道提取车头时距,用高斯混合模型对车头时距进行分类,得到两种状态下车头时距的高斯分布模型。根据信号交叉口的实际情况,该模型可看成是饱和状态和非饱和状态下车头时距高斯分布的组合,则两种分布中均值较小的分布可看作是饱和车头时距的高斯分布,其均值即为饱和车头时距。

    基于高斯混合模型的信号交叉口饱和车头时距估计方法

    公开(公告)号:CN110070734A

    公开(公告)日:2019-07-30

    申请号:CN201910397787.2

    申请日:2019-05-14

    Applicant: 东南大学

    Abstract: 本发明提供一种基于高斯混合模型的信号交叉口饱和车头时距估计方法。主要解决的技术问题是:利用车辆号牌数据,基于高斯混合模型,提出一种完全数据驱动的信号交叉口饱和车头时距估计方法。根据采集的信号交叉口号牌数据,分车道提取车头时距,用高斯混合模型对车头时距进行分类,得到两种状态下车头时距的高斯分布模型。根据信号交叉口的实际情况,该模型可看成是饱和状态和非饱和状态下车头时距高斯分布的组合,则两种分布中均值较小的分布可看作是饱和车头时距的高斯分布,其均值即为饱和车头时距。

Patent Agency Ranking