一种基于Adaboost算法的人脸检测方法

    公开(公告)号:CN110046565B

    公开(公告)日:2023-07-14

    申请号:CN201910279211.6

    申请日:2019-04-09

    Abstract: 本发明公开一种基于Adaboost算法的人脸检测方法,步骤是:对输入的视频或图像进行预处理,包括进行灰度归一化和滤波去噪;将彩色图像的RGB空间转换为YCbCr空间,然后根据肤色色度的范围,对图像进行肤色分割;对肤色分割后的图像进行形态学处理;采用Canny边缘检测算法对形态学处理后的图像进行边缘检测;利用RHT检测图像中的椭圆,将检测出似人脸的椭圆区域抠出,作为人脸候选区域;利用Adaboost算法训练级联分类器,利用训练好的级联分类器对人脸候选区域进行人脸检测,输出人脸位置。此种人脸检测方法能够在保证检测率的同时,降低计算量,提高检测速度。

    一种基于Adaboost算法的人脸检测方法

    公开(公告)号:CN110046565A

    公开(公告)日:2019-07-23

    申请号:CN201910279211.6

    申请日:2019-04-09

    Abstract: 本发明公开一种基于Adaboost算法的人脸检测方法,步骤是:对输入的视频或图像进行预处理,包括进行灰度归一化和滤波去噪;将彩色图像的RGB空间转换为YCbCr空间,然后根据肤色色度的范围,对图像进行肤色分割;对肤色分割后的图像进行形态学处理;采用Canny边缘检测算法对形态学处理后的图像进行边缘检测;利用RHT检测图像中的椭圆,将检测出似人脸的椭圆区域抠出,作为人脸候选区域;利用Adaboost算法训练级联分类器,利用训练好的级联分类器对人脸候选区域进行人脸检测,输出人脸位置。此种人脸检测方法能够在保证检测率的同时,降低计算量,提高检测速度。

    一种基于局部感受野的人脸验证方法

    公开(公告)号:CN111582057A

    公开(公告)日:2020-08-25

    申请号:CN202010310755.7

    申请日:2020-04-20

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于局部感受野的人脸验证方法,属于计算、推算或计数的技术领域。步骤是:建立外部数据集,对数据集中的样本进行数据增强;建立卷积神经网络,该卷积神经网络的输入为彩色图片,输出为图片中人脸区域对应的特征向量和人脸位置的预测框坐标,测试时根据预测框在图像中的位置输出对应区域的特征向量;利用测试集对预训练好的卷积神经网络进行测试并根据测试结果对卷积神经网络进行微调。本发明根据深度神经网络的平移不变性,利用一个网络有效提取出人脸区域的特征,使特征向量的感受野恰好仅包含人脸,从而有效减少背景信息带来的噪声,保证人脸验证的准确率,同时提升了网络计算的并行度,大大简化了训练过程。

    一种基于局部感受野的人脸验证方法

    公开(公告)号:CN111582057B

    公开(公告)日:2022-02-15

    申请号:CN202010310755.7

    申请日:2020-04-20

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于局部感受野的人脸验证方法,属于计算、推算或计数的技术领域。步骤是:建立外部数据集,对数据集中的样本进行数据增强;建立卷积神经网络,该卷积神经网络的输入为彩色图片,输出为图片中人脸区域对应的特征向量和人脸位置的预测框坐标,测试时根据预测框在图像中的位置输出对应区域的特征向量;利用测试集对预训练好的卷积神经网络进行测试并根据测试结果对卷积神经网络进行微调。本发明根据深度神经网络的平移不变性,利用一个网络有效提取出人脸区域的特征,使特征向量的感受野恰好仅包含人脸,从而有效减少背景信息带来的噪声,保证人脸验证的准确率,同时提升了网络计算的并行度,大大简化了训练过程。

    一种基于幂指数量化的神经网络压缩方法

    公开(公告)号:CN110245753A

    公开(公告)日:2019-09-17

    申请号:CN201910445413.3

    申请日:2019-05-27

    Applicant: 东南大学

    Abstract: 本发明涉及人工智能神经网络技术领域,具体公开一种基于幂指数量化的神经网络压缩方法。该方法,在外部数据集上训练卷积神经网络后获取该网络的初始化权值参数;根据权值参数绝对值的大小以及分组阈值将权值参数分为两组,绝对值超过阈值的一组基于预先设定的位宽及绝对值最大的权值参数量化大于分组阈值的一组权值参数,将权值参数量化为2的幂或者0;对小于分组阈值的权值参数再训练后执行分组再量化的循环操作,直至网络收敛。本发明在保证参数的取值范围不被压缩的同时在一定程度上减小量化对最终目标检测准确率的影响,解决了量化后准确率下降过多以及硬件实现难度大的问题。

Patent Agency Ranking