-
公开(公告)号:CN108664939A
公开(公告)日:2018-10-16
申请号:CN201810466761.4
申请日:2018-05-16
Applicant: 东南大学
Abstract: 本发明公开了一种基于HOG特征与深度学习的遥感图像飞机识别方法,首先对样本提取HOG特征放入SVM进行训练分类,然后用训练好的分类器对遥感图像中的飞机进行检测。在进行检测时,先对整幅图像求梯度,每8*8个像素组成一个Cell,对每个Cell求出梯度方向直方图,然后每4*4个Cell组成一个Block,并将每个Block中的HOG特征归一化,最后只需将每7*7个Block中的HOG特征串联起来最为最后的特征放入训练好的SVM分类器进行分类,相比直接对图像的每个位置扫描,速度有巨大的提升,这一步相当于粗分类,对于检测出的候选目标,再放入训练好的深度卷积网络VGG中进一步细分类,有效提高了识别精度。本发明由粗到细的方式,显著提高了遥感图像中飞机识别的速度和准确率。