一种基于优化的BP神经网络算法的降水量预测方法

    公开(公告)号:CN111210082A

    公开(公告)日:2020-05-29

    申请号:CN202010030817.9

    申请日:2020-01-13

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于优化的BP神经网络算法的降水量预测方法,包括以下步骤:S1:基于ERA5数据在Bevis模型的基础上增加年周期项和水汽压的自然对数项,建立非线性方程格网大气加权平均温度(Tm)模型;S2:利用全球卫星导航定位系统(GNSS)数据的天顶总延迟、地面温度、地面气压等信息计算得到天顶湿延迟,以及S1步骤得到的Tm模型,得到GNSS大气可降水量(PWV);S3:利用结合互信息分析以及粒子群算法优化的BP(Back-Propagation)神经网络算法建立降水量预测模型;S4:设计一体化降水量预测系统,得到降水量,并验证其精度。本发明有效提高了计算精度。

    一种基于优化的BP神经网络算法的降水量预测方法

    公开(公告)号:CN111210082B

    公开(公告)日:2023-09-19

    申请号:CN202010030817.9

    申请日:2020-01-13

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于优化的BP神经网络算法的降水量预测方法,包括以下步骤:S1:基于ERA5数据在Bevis模型的基础上增加年周期项和水汽压的自然对数项,建立非线性方程格网大气加权平均温度(Tm)模型;S2:利用全球卫星导航定位系统(GNSS)数据的天顶总延迟、地面温度、地面气压等信息计算得到天顶湿延迟,以及S1步骤得到的Tm模型,得到GNSS大气可降水量(PWV);S3:利用结合互信息分析以及粒子群算法优化的BP(Back‑Propagation)神经网络算法建立降水量预测模型;S4:设计一体化降水量预测系统,得到降水量,并验证其精度。本发明有效提高了计算精度。

Patent Agency Ranking