-
公开(公告)号:CN102880865B
公开(公告)日:2015-06-17
申请号:CN201210372408.2
申请日:2012-09-28
Applicant: 东南大学
Abstract: 本发明公开了一种基于肤色与形态特征的动态手势识别方法,该方法为:采集视频图像,得到当前的视频帧;对采集到的视频帧作肤色阈值处理,得到肤色二值图像;将二值图像进行滤波降噪处理,提高图像质量;检测识别肤色二值图像中的人手部分;根据人手部分的重心位置信息识别手势的动作。本发明具有一下优点:(1)实时性好,响应时间短,可以应用到人机交互领域;(2)成本低廉,通过摄像头和计算机或DSP之类的处理设备即可组成;(3)稳定性好,对于手势的旋转、平移、变形,本算法都有较好的处理效果。本发明可应用于人机交互领域。
-
公开(公告)号:CN101819681A
公开(公告)日:2010-09-01
申请号:CN200910263083.2
申请日:2009-12-16
Applicant: 东南大学
Abstract: 本发明公布了一种权值自适应调整的加权平均背景更新方法,本发明对当前帧图像与前一帧图像进行前向帧差计算并二值化,得到前向帧差前景二值图,对当前帧图像与后一帧图像进行后向帧差计算并二值化,得到后向帧差前景二值图,对前向和后向帧差前景二值图执行与操作,得到能够准确区分运动车辆区域与静止背景区域的二值图,最后根据该二值图判断像素所处的区域,对每个像素赋予自适应的权值进行加权平均背景更新。本发明所提供的背景更新方法能够对光照变化和车流变化进行自适应响应,且具有准确性高的优点。
-
公开(公告)号:CN101794440B
公开(公告)日:2012-04-18
申请号:CN201010123621.0
申请日:2010-03-12
Applicant: 东南大学
IPC: G06T5/50
Abstract: 本发明提出一种图像序列的加权自适应超分辨率重建方法,该方法在鲁棒性和实用性方面优于传统的方法,对获得高质量的图像具有重要的应用价值,它包括如下步骤:(1)取同一传感器获得的连续多帧低分辨率图像,然后对该低分辨率图像序列进行重采样,得到重采样的低分辨率图像序列;(2)利用重采样的低分辨率图像序列重建一帧高分辨率图像,重建一帧高分辨率图像的方法为:首先建立高分辨率图像的退化模型,然后根据给定的高分辨率图像的退化模型以及正则化理论,把退化模型中高分辨率图像的求解过程转化为高分辨率图像的重建优化模型解的优化过程,最后利用逐渐非凸算法对高分辨率图像的重建优化模型进行优化,得到高分辨率图像的最优估计值。
-
公开(公告)号:CN102243705A
公开(公告)日:2011-11-16
申请号:CN201110120366.9
申请日:2011-05-09
Applicant: 东南大学
Abstract: 本发明提供一种利用交通图像的边缘信息来定位车牌的方法,该方法为:利用Sobel算子对交通图像进行边缘检测,对得到的灰度边缘图像进行二值化获得二值边缘图像;然后在垂直方向对该二值边缘图像进行水平投影获得垂直向量,对该垂直向量进行二值化并从上到下进行扫描,得到车牌区域的起始行坐标和终点行坐标,实现车牌的垂直定位;之后利用起始行坐标和终点行坐标得到垂直定位后的二值边缘图像,在水平方向对该二值边缘图像进行垂直投影获得水平向量,对该水平向量进行二值化并从左向右进行扫描,得到车牌区域的起始列坐标和终点列坐标,实现车牌的水平定位;最后利用起始行、列坐标和终点行、列坐标定位出车牌。本发明具有较高的车牌定位精度,且在低对比度情况(比如夜间光线不足)下仍然能够较准确地对车牌进行定位。
-
公开(公告)号:CN102184412A
公开(公告)日:2011-09-14
申请号:CN201110120361.6
申请日:2011-05-09
Applicant: 东南大学
IPC: G06K9/62
Abstract: 本发明提供一种基于最小错误率贝叶斯分类器的车牌数字及字母识别方法,该方法为:以粗网格特征作为字符识别的特征,针对34类数字及字母字符,建立各自的字符样本库,根据样本库计算各类字符粗网格特征的均值、协方差矩阵及字符的先验概率,进而得到各类字符的判别函数,完成最小错误率贝叶斯分类器的设计,之后提取待识别字符图像的粗网格特征,利用最小错误率贝叶斯分类器对该字符图像进行第一级分类,如果第一级分类得到的类别属于相近字符的类别,则分5种情况分别提取该字符图像不同位置的局部特征,进行相近字符的第二次分类。本发明中最小错误率贝叶斯分类器所用的判别函数简单且对字符进行二级分类,具有识别速度快、识别准确性高的优点。
-
公开(公告)号:CN102184412B
公开(公告)日:2013-05-01
申请号:CN201110120361.6
申请日:2011-05-09
Applicant: 东南大学
IPC: G06K9/62
Abstract: 本发明提供一种基于最小错误率贝叶斯分类器的车牌数字及字母识别方法,该方法为:以粗网格特征作为字符识别的特征,针对34类数字及字母字符,建立各自的字符样本库,根据样本库计算各类字符粗网格特征的均值、协方差矩阵及字符的先验概率,进而得到各类字符的判别函数,完成最小错误率贝叶斯分类器的设计,之后提取待识别字符图像的粗网格特征,利用最小错误率贝叶斯分类器对该字符图像进行第一级分类,如果第一级分类得到的类别属于相近字符的类别,则分5种情况分别提取该字符图像不同位置的局部特征,进行相近字符的第二次分类。本发明中最小错误率贝叶斯分类器所用的判别函数简单且对字符进行二级分类,具有识别速度快、识别准确性高的优点。
-
公开(公告)号:CN101794440A
公开(公告)日:2010-08-04
申请号:CN201010123621.0
申请日:2010-03-12
Applicant: 东南大学
IPC: G06T5/50
Abstract: 本发明提出一种图像序列的加权自适应超分辨率重建方法,该方法在鲁棒性和实用性方面优于传统的方法,对获得高质量的图像具有重要的应用价值,它包括如下步骤:(1)取同一传感器获得的连续多帧低分辨率图像,然后对该低分辨率图像序列进行重采样,得到重采样的低分辨率图像序列;(2)利用重采样的低分辨率图像序列重建一帧高分辨率图像,重建一帧高分辨率图像的方法为:首先建立高分辨率图像的退化模型,然后根据给定的高分辨率图像的退化模型以及正则化理论,把退化模型中高分辨率图像的求解过程转化为高分辨率图像的重建优化模型解的优化过程,最后利用逐渐非凸算法对高分辨率图像的重建优化模型进行优化,得到高分辨率图像的最优估计值。
-
公开(公告)号:CN102880865A
公开(公告)日:2013-01-16
申请号:CN201210372408.2
申请日:2012-09-28
Applicant: 东南大学
Abstract: 本发明公开了一种基于肤色与形态特征的动态手势识别方法,该方法为:采集视频图像,得到当前的视频帧;对采集到的视频帧作肤色阈值处理,得到肤色二值图像;将二值图像进行滤波降噪处理,提高图像质量;检测识别肤色二值图像中的人手部分;根据人手部分的重心位置信息识别手势的动作。本发明具有一下优点:(1)实时性好,响应时间短,可以应用到人机交互领域;(2)成本低廉,通过摄像头和计算机或DSP之类的处理设备即可组成;(3)稳定性好,对于手势的旋转、平移、变形,本算法都有较好的处理效果。本发明可应用于人机交互领域。
-
公开(公告)号:CN101819681B
公开(公告)日:2011-11-09
申请号:CN200910263083.2
申请日:2009-12-16
Applicant: 东南大学
Abstract: 本发明公布了一种权值自适应调整的加权平均背景更新方法,本发明对当前帧图像与前一帧图像进行前向帧差计算并二值化,得到前向帧差前景二值图,对当前帧图像与后一帧图像进行后向帧差计算并二值化,得到后向帧差前景二值图,对前向和后向帧差前景二值图执行与操作,得到能够准确区分运动车辆区域与静止背景区域的二值图,最后根据该二值图判断像素所处的区域,对每个像素赋予自适应的权值进行加权平均背景更新。本发明所提供的背景更新方法能够对光照变化和车流变化进行自适应响应,且具有准确性高的优点。
-
公开(公告)号:CN101739560A
公开(公告)日:2010-06-16
申请号:CN200910263082.8
申请日:2009-12-16
Applicant: 东南大学
IPC: G06K9/40
Abstract: 本发明公布了一种基于边缘和骨架信息的车辆阴影消除方法,本发明方法对当前图像进行背景差计算并二值化得到前景二值图,通过对前景二值图进行边缘检测和膨胀得到车辆及阴影区域的边缘图像,通过对背景差图像进行边缘检测和膨胀得到车辆的骨架图像,然后,以车辆区域和阴影区域相对于背景区域的灰度比为判别特征,初步检测阴影区域,并用前景二值图减去初步阴影区域,最后利用骨架图像对车辆区域内的孔洞进行补充并减去边缘图像,得到最终消除阴影区域之后的图像。本发明综合利用了用以区分车辆区域和阴影区域的灰度特征、车辆与阴影区域的边缘信息及车辆骨架的信息,能够准确地检测和消除阴影区域。
-
-
-
-
-
-
-
-
-