一种基于卷积神经网络的细粒度犬类图像识别方法

    公开(公告)号:CN111553392B

    公开(公告)日:2024-03-01

    申请号:CN202010307109.5

    申请日:2020-04-17

    Applicant: 东南大学

    Abstract: 本发明涉及一种基于卷积神经网络的细粒度犬类图像识别方法,所述方法包括以下步骤:步骤1:构建卷积神经网络FG‑LANet;步骤2:构建大型预训练图像样本数据库并使用该数据库对网络进行预训练;步骤3:构建犬类图像样本数据库并使用该数据库对网络进行微调训练;步骤4:获得犬类品种识别器,使用训练好的卷积神经网络作为犬类品种识别器对犬类图像进行识别。该技术方案通过训练一种适用于犬类图像识别的卷积神经网络模型作为犬类品种识别器,将其集成入电子设备可后提高电子设备对犬类品种进行识别的正确率。

    一种基于卷积神经网络的细粒度犬类图像识别方法

    公开(公告)号:CN111553392A

    公开(公告)日:2020-08-18

    申请号:CN202010307109.5

    申请日:2020-04-17

    Applicant: 东南大学

    Abstract: 本发明涉及一种基于卷积神经网络的细粒度犬类图像识别方法,所述方法包括以下步骤:步骤1:构建卷积神经网络FG-LANet;步骤2:构建大型预训练图像样本数据库并使用该数据库对网络进行预训练;步骤3:构建犬类图像样本数据库并使用该数据库对网络进行微调训练;步骤4:获得犬类品种识别器,使用训练好的卷积神经网络作为犬类品种识别器对犬类图像进行识别。该技术方案通过训练一种适用于犬类图像识别的卷积神经网络模型作为犬类品种识别器,将其集成入电子设备可后提高电子设备对犬类品种进行识别的正确率。

Patent Agency Ranking