航空图像特征点匹配扩散递归校准方法

    公开(公告)号:CN110378940B

    公开(公告)日:2023-04-07

    申请号:CN201910521634.4

    申请日:2019-06-17

    Applicant: 东南大学

    Abstract: 本发明公开了一种航空图像特征点匹配扩散递归校准方法,包括以下步骤:S1:对基准图像和匹配图像分别划分密度单元;S2:对基准图像和匹配图像均执行以下操作:根据密度单元中的特征点的数量设定阈值n,将特征点数量≥n的密度单元标记为高密度单元,其他密度单元标记为低密度单元;S3:对基准图像和匹配图像均执行以下操作:将连通的高密度单元提取出来,得到航空图像的高密度区域;S4:对基准图像和匹配图像均执行以下操作:对所有高密度区域进行位置标记;S5:对基准图像和匹配图像的高密度区域进行匹配。本发明有效提高了抗干扰能力和效率。

    航空图像特征点匹配方法

    公开(公告)号:CN110378379A

    公开(公告)日:2019-10-25

    申请号:CN201910521233.9

    申请日:2019-06-17

    Applicant: 东南大学

    Abstract: 本发明公开了一种航空图像特征点匹配方法,包括以下步骤:S1:对基准图像和匹配图像均执行以下操作:以特征点为中心,取特征点周围一定数量的像素,将所述特征点周围的像素与特征点一起作为特征点特征矩阵;S2:对基准图像的特征点建立相关性系数矩阵;S3:将基准图像中的特征点按照特异性从强到弱放入队列进行储存;S4:对基准图像和匹配图像进行连接点匹配。本发明有效提高了方法的稳定性和准确性。

    航空图像特征点匹配扩散递归校准方法

    公开(公告)号:CN110378940A

    公开(公告)日:2019-10-25

    申请号:CN201910521634.4

    申请日:2019-06-17

    Applicant: 东南大学

    Abstract: 本发明公开了一种航空图像特征点匹配扩散递归校准方法,包括以下步骤:S1:对基准图像和匹配图像分别划分密度单元;S2:对基准图像和匹配图像均执行以下操作:根据密度单元中的特征点的数量设定阈值n,将特征点数量≥n的密度单元标记为高密度单元,其他密度单元标记为低密度单元;S3:对基准图像和匹配图像均执行以下操作:将连通的高密度单元提取出来,得到航空图像的高密度区域;S4:对基准图像和匹配图像均执行以下操作:对所有高密度区域进行位置标记;S5:对基准图像和匹配图像的高密度区域进行匹配。本发明有效提高了抗干扰能力和效率。

    航空图像特征点匹配方法

    公开(公告)号:CN110378379B

    公开(公告)日:2023-10-13

    申请号:CN201910521233.9

    申请日:2019-06-17

    Applicant: 东南大学

    Abstract: 本发明公开了一种航空图像特征点匹配方法,包括以下步骤:S1:对基准图像和匹配图像均执行以下操作:以特征点为中心,取特征点周围一定数量的像素,将所述特征点周围的像素与特征点一起作为特征点特征矩阵;S2:对基准图像的特征点建立相关性系数矩阵;S3:将基准图像中的特征点按照特异性从强到弱放入队列进行储存;S4:对基准图像和匹配图像进行连接点匹配。本发明有效提高了方法的稳定性和准确性。

Patent Agency Ranking