一种基于FPGA的稠密连接神经网络的实现方法

    公开(公告)号:CN109086879B

    公开(公告)日:2020-06-16

    申请号:CN201810729915.4

    申请日:2018-07-05

    Abstract: 本发明公开一种基于FPGA的稠密连接神经网络的实现方法,步骤是:将整个卷积神经网络划分为多个稠密连接块;利用FPGA上的资源设计卷积运算单元,进而设计FPGA端卷积运算模块;设计神经网络整体的数据收发逻辑,包括七个部分:Input Feature Map、Send Buffer、卷积运算模块、Receive Buffer、Output Feature Map、Dense Block Buffer、Max Buffer;根据稠密连接神经网络各层输入输出数据量的大小,设计Input Feature Map、Output Feature Map、Dense Block Buffer所需的存储区域大小,根据Block大小和卷积运算单元的并行度设计Send Buffer、Receive Buffer所需存储区域的大小;根据稠密连接神经网络各层的特点设计其数据收发逻辑。此种方法可在保证算法准确度的前提下降低网络各层宽度,减少参数数量,提高数据传输效率,提升神经网络的运行速度。

    一种基于FPGA的稠密连接神经网络的实现方法

    公开(公告)号:CN109086879A

    公开(公告)日:2018-12-25

    申请号:CN201810729915.4

    申请日:2018-07-05

    Abstract: 本发明公开一种基于FPGA的稠密连接神经网络的实现方法,步骤是:将整个卷积神经网络划分为多个稠密连接块;利用FPGA上的资源设计卷积运算单元,进而设计FPGA端卷积运算模块;设计神经网络整体的数据收发逻辑,包括七个部分:Input Feature Map、Send Buffer、卷积运算模块、Receive Buffer、Output Feature Map、Dense Block Buffer、Max Buffer;根据稠密连接神经网络各层输入输出数据量的大小,设计Input Feature Map、Output Feature Map、Dense Block Buffer所需的存储区域大小,根据Block大小和卷积运算单元的并行度设计Send Buffer、Receive Buffer所需存储区域的大小;根据稠密连接神经网络各层的特点设计其数据收发逻辑。此种方法可在保证算法准确度的前提下降低网络各层宽度,减少参数数量,提高数据传输效率,提升神经网络的运行速度。

    一种基于ZYNQ的人脸关键点检测系统

    公开(公告)号:CN109034025A

    公开(公告)日:2018-12-18

    申请号:CN201810774764.4

    申请日:2018-07-16

    CPC classification number: G06K9/00228 G06K9/00268

    Abstract: 本发明公开一种基于ZYNQ的人脸关键点检测系统,包括摄像头、ZYNQ平台和VGA显示器,其中,ZYNQ平台集成有可编程逻辑模块和处理系统模块,处理系统模块中设有处理器和存储器;所述摄像头用于采集视频信息并将其发送到ZYNQ平台,ZYNQ平台将视频转换成单帧图像并保存在存储器中,可编程逻辑模块进行一系列计算后将运算结果返回处理器,处理器根据运算结果显示相应的人脸关键点,并将处理后的图像存至存储器,最后图像转成满足VGA输出的数据格式并输出到VGA显示器。此种系统具有并行计算能力强,准确率高和预测速度快的优点。

    一种基于迁移学习的人脸属性分析方法

    公开(公告)号:CN109325398B

    公开(公告)日:2020-10-09

    申请号:CN201810702472.X

    申请日:2018-06-30

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于迁移学习的人脸属性分析方法,属于计算推算的技术领域,尤其涉及识别人脸属性的计算机视觉技术领域。本发明在多属性预测网络上联合训练样本集以预测特征属性,将收敛的多属性预测网络迁移到主属性预测网络,继续训练主属性预测网络并微调参数直至主属性预测网络的损失函数收敛,所述主属性包含但不限于基于逻辑回归的人脸属性以及基于线性回归的人脸属性的主属性,既防止了局部极小,又避免了任务过于复杂导致的精度降低,在实际应用中更加精确灵活。

    一种基于特征复用的人脸识别方法

    公开(公告)号:CN109214263A

    公开(公告)日:2019-01-15

    申请号:CN201810702467.9

    申请日:2018-06-30

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于特征复用的人脸识别方法,属于计算推算的技术领域,尤其涉及人脸识别的计算机视觉技术领域。该方法利用外部数据集训练人脸特征提取器,通过多次等步长卷积及特征图拼接的方式分级提取本地数据集中各成员对应的参考特征以构成参考特征空间,对比待测试样本的特征向量和参考特征以确定与待测试样本的特征向量最相似的参考特征,在与待测试样本的特征向量最相似的参考特征满足阈值要求时,以与待测试样本的特征向量最相似的参考特征所属成员的身份为待测试样本的身份,否则,返回待测试样本身份识别失败的消息,以较少的计算资源实现了人脸的快速识别。

    一种基于迁移学习的人脸属性分析方法

    公开(公告)号:CN109325398A

    公开(公告)日:2019-02-12

    申请号:CN201810702472.X

    申请日:2018-06-30

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于迁移学习的人脸属性分析方法,属于计算推算的技术领域,尤其涉及识别人脸属性的计算机视觉技术领域。本发明在多属性预测网络上联合训练样本集以预测特征属性,将收敛的多属性预测网络迁移到主属性预测网络,继续训练主属性预测网络并微调参数直至主属性预测网络的损失函数收敛,所述主属性包含但不限于基于逻辑回归的人脸属性以及基于线性回归的人脸属性的主属性,既防止了局部极小,又避免了任务过于复杂导致的精度降低,在实际应用中更加精确灵活。

    一种在线学习的人脸识别方法

    公开(公告)号:CN109145717B

    公开(公告)日:2021-05-11

    申请号:CN201810719313.0

    申请日:2018-06-30

    Applicant: 东南大学

    Abstract: 本发明公开了一种在线学习的人脸识别方法,属于计算推算的技术领域,尤其涉及人脸识别的计算机视觉技术领域。该方法利用外部数据集训练人脸特征提取器,提取本地数据集中各成员对应的参考特征以构成参考特征空间,对比待测试样本的特征向量和参考特征以确定与待测试样本的特征向量最相似的参考特征,在与待测试样本的特征向量最相似的参考特征满足阈值要求时,以与待测试样本的特征向量最相似的参考特征所属成员的身份为待测试样本的身份,否则,返回待测试样本身份识别失败的消息,根据待测试样本的预测特征向量与其在参考特征空间中对应的真实特征向量的差异更新参考特征空间,适应人脸特征随时间推移发生的变化,尤其适合频繁变更成员的场合。

    一种在线学习的人脸识别方法

    公开(公告)号:CN109145717A

    公开(公告)日:2019-01-04

    申请号:CN201810719313.0

    申请日:2018-06-30

    Applicant: 东南大学

    CPC classification number: G06K9/00268 G06K9/00718 G06N3/0454 G06N3/084

    Abstract: 本发明公开了一种在线学习的人脸识别方法,属于计算推算的技术领域,尤其涉及人脸识别的计算机视觉技术领域。该方法利用外部数据集训练人脸特征提取器,提取本地数据集中各成员对应的参考特征以构成参考特征空间,对比待测试样本的特征向量和参考特征以确定与待测试样本的特征向量最相似的参考特征,在与待测试样本的特征向量最相似的参考特征满足阈值要求时,以与待测试样本的特征向量最相似的参考特征所属成员的身份为待测试样本的身份,否则,返回待测试样本身份识别失败的消息,根据待测试样本的预测特征向量与其在参考特征空间中对应的真实特征向量的差异更新参考特征空间,适应人脸特征随时间推移发生的变化,尤其适合频繁变更成员的场合。

Patent Agency Ranking