一种基于阶次谱迁移的风电传动链智能故障诊断方法

    公开(公告)号:CN112734001A

    公开(公告)日:2021-04-30

    申请号:CN202011462137.0

    申请日:2020-12-09

    Applicant: 东南大学

    Abstract: 本发明提供了一种基于阶次谱迁移的风电传动链智能故障诊断方法。在训练阶段,通过源域数据和目标域正常数据构建智能诊断模型。首先通过傅立叶分解算法分离原始振动信号中的窄带共振分量,然后通过希尔伯特阶次变换计算共振分量的包络阶次谱,最后通过一维卷积神经网络学习故障特征与故障类别之间的映射关系。在测试阶段,采用相同的傅立叶分解算法和希尔伯特阶次解调提取目标域振动信号的包络阶次谱,然后通过阶次谱迁移算法将目标域数据的故障特征迁移至源域,最后通过训练好的模型识别目标域数据的故障类别。具有识别精度高,对目标设备训练样本依赖性小的特点,能有效应用于故障数据缺乏条件下风电传动链的智能故障诊断。

    一种利用高斯噪声的设备异常检测方法

    公开(公告)号:CN112836570A

    公开(公告)日:2021-05-25

    申请号:CN202011498766.9

    申请日:2020-12-16

    Applicant: 东南大学

    Abstract: 本发明公开了一种利用高斯噪声的设备异常检测方法,本发明无需大量故障样本,采用基于高斯噪声的生成对抗方式训练正常样本,得到用于映射潜向量映射空间的生成器,一旦异常样本经过生成器映射后脱离潜向量映射空间,即可实现异常检测。由于生成器是只匹配正常样本的,正常的振动图像经过生成器可以映射成原始定义的分布pg~N(0,1),但是异常样本经过这个生成器无法匹配原始定义的分布,因为该生成器是仅用正常样本做生成对抗训练的。因此,在不同故障模式下的异常样本会以不同的方式偏离正常样本的潜向量映射空间,因此基于上述方法的异常检测模型可以实现不同故障模式的故障预警。

    一种利用高斯噪声的设备异常检测方法

    公开(公告)号:CN112836570B

    公开(公告)日:2024-02-06

    申请号:CN202011498766.9

    申请日:2020-12-16

    Applicant: 东南大学

    Abstract: 本发明公开了一种利用高斯噪声的设备异常检测方法,本发明无需大量故障样本,采用基于高斯噪声的生成对抗方式训练正常样本,得到用于映射潜向量映射空间的生成器,一旦异常样本经过生成器映射后脱离潜向量映射空间,即可实现异常检测。由于生成器是只匹配正常样本的,正常的振动图像经过生成器可以映射成原始定义的分布pg~N(0,1),但是异常样本经过这个生成器无法匹配原始定义的分布,因为该生成器是仅用正常样本做生成对抗训练的。因此,在不同故障模式下的异常样本会以不同的方式偏离正常样本的潜向量映射空间,因此基于上述方法的异常检测模型可以实现不同故障模式的故障预警。

    一种基于共振基带宽傅立叶分解的齿轮箱故障诊断方法

    公开(公告)号:CN112539933A

    公开(公告)日:2021-03-23

    申请号:CN202011491965.7

    申请日:2020-12-16

    Applicant: 东南大学

    Abstract: 本发明提供了一种基于共振基带宽傅立叶分解的齿轮箱故障诊断方法,共振基带宽傅立叶分解首先基于单自由度质量‑刚度‑阻尼系统建立齿轮箱的暂态振动响应模型,然后通过傅立叶谱极大值点搜索估计齿轮箱振动系统的自振频率并通过带宽优化提取原始信号中的共振带,最后根据特征频率比筛选出分解结果中包含故障信息较多的有效分量并通过希尔伯特解调实现齿轮箱故障的准确识别。本发明具有计算速度快、抗噪声能力强和故障识别精度高的特点,能有效应用于复杂噪声环境下的齿轮箱故障诊断。

Patent Agency Ranking