一种基于SE注意机制混合式网络和批谱惩罚的旋转机械故障诊断方法

    公开(公告)号:CN118965027A

    公开(公告)日:2024-11-15

    申请号:CN202410988444.4

    申请日:2024-07-23

    Abstract: 本发明涉及一种基于SE注意机制混合式网络和批谱惩罚的旋转机械故障诊断方法。首先,本方法通过SE(Squeeze‑and‑Excitation)注意力机制动态地调整神经网络中各通道的权重,增强模型对故障特征的识别能力。同时,引入MixStyle技术,通过在训练过程中概率性地混合来自不同域的样本特征,有效提高了模型在不同运行条件下的泛化性能。此外,本发明还采用批量光谱惩罚(BSP)策略,通过惩罚最大奇异值来平衡特征的传递性和辨识性,从而提升了模型在跨域故障诊断中的准确率和鲁棒性。该方法经NEFU齿轮数据集和JUN轴承数据集验证,结果表明,相较于传统方法,本发明提出的方法在旋转机械的无监督故障诊断任务中表现出色,具有优越的诊断性能和较高的准确率。

Patent Agency Ranking