-
公开(公告)号:CN110489968A
公开(公告)日:2019-11-22
申请号:CN201910751207.5
申请日:2019-08-15
Applicant: 东北大学秦皇岛分校
Abstract: 本发明提供了一种基于RNN和CNN的Android恶意软件检测方法及系统,检测方法包括:对训练样本的原始安装文件进行特征提取,获得操作码序列;利用操作码序列训练BLSTM网络;利用训练好的BLSTM网络将操作码序列提取为特征图片;利用特征图片训练卷积神经网络;对待检测Android应用,首先对其安装文件进行特征提取,获得其操作码序列;然后将该操作码序列输入训练好的BLSTM网络中,提取出特征图片;最后将该特征图片输入到训练好的卷积神经网络中,输出是否属于恶意软件的分类结果。本发明实现对Android平台下的善意软件和恶意软件的识别区分,提高Android软件平台的安全性。
-
公开(公告)号:CN110489968B
公开(公告)日:2021-02-05
申请号:CN201910751207.5
申请日:2019-08-15
Applicant: 东北大学秦皇岛分校
Abstract: 本发明提供了一种基于RNN和CNN的Android恶意软件检测方法及系统,检测方法包括:对训练样本的原始安装文件进行特征提取,获得操作码序列;利用操作码序列训练BLSTM网络;利用训练好的BLSTM网络将操作码序列提取为特征图片;利用特征图片训练卷积神经网络;对待检测Android应用,首先对其安装文件进行特征提取,获得其操作码序列;然后将该操作码序列输入训练好的BLSTM网络中,提取出特征图片;最后将该特征图片输入到训练好的卷积神经网络中,输出是否属于恶意软件的分类结果。本发明实现对Android平台下的善意软件和恶意软件的识别区分,提高Android软件平台的安全性。
-