一种基于注意力深度特征重建的脑MR图像分割方法

    公开(公告)号:CN110136122B

    公开(公告)日:2023-01-13

    申请号:CN201910411647.6

    申请日:2019-05-17

    Abstract: 本发明涉及一种基于注意力深度特征重建的脑MR图像分割方法,包括步骤:S1、获取T1、T2和FLAIR三个模态的脑MR图像数据;S2、对获取到的三个模态的脑MR图像数据进行预处理,得到数据增强的三个模态的脑MR图像数据;S3、将S2中得到的三个模态的脑MR图像数据输入深度编码模型中得到三个模态的脑MR图像卷积特征数据;S4、将S3中获得的三个模态的脑MR图像卷积特征数据输入空间自注意力模块SAM,获得空间自注意力模块修正后的综合各模态的脑MR图像卷积特征数据;本发明提供的图像分割方法通过空间自注意力模块计算任意两个位置之间的交互关系,捕获特征远程依赖性,深度特征重建模块使用深度特征对不同层级的特征进行重新加权,保持不同层级特征的一致性。

Patent Agency Ranking