-
公开(公告)号:CN108334577A
公开(公告)日:2018-07-27
申请号:CN201810067980.5
申请日:2018-01-24
Applicant: 东北大学
Abstract: 本发明公开一种安全有效的多方数值型记录匹配方法,属于数据质量和数据集成领域,具体方法为:各数据源间统一参数、生成密钥,接着,进行以下三个步骤,(1)利用类模运算加密各数据源中的数值型记录,(2)安全地查询出各数值型属性中的最大最小值,并优化地计算两者间的相似度作为各记录在该属性中的相似度,(3)通过各记录在各属性中的相似度,判断是否匹配成功。采用本发明的多方数值型记录匹配方法,可以在更短的时间内,更加安全有效地识别出重复的数据对象;通过证明若属性中最大最小值的相似度大于阈值,则任意两个属性值的相似度均大于阈值,只需安全快速地查找出各属性的最大最小值,即可判断各数值型记录是否匹配成功,保证了高效性。
-
公开(公告)号:CN108334577B
公开(公告)日:2020-02-07
申请号:CN201810067980.5
申请日:2018-01-24
Applicant: 东北大学
IPC: G06F16/215 , G06F16/2458 , G06F16/28 , G06F21/62
Abstract: 本发明公开一种安全有效的多方数值型记录匹配方法,属于数据质量和数据集成领域,具体方法为:各数据源间统一参数、生成密钥,接着,进行以下三个步骤,(1)利用类模运算加密各数据源中的数值型记录,(2)安全地查询出各数值型属性中的最大最小值,并优化地计算两者间的相似度作为各记录在该属性中的相似度,(3)通过各记录在各属性中的相似度,判断是否匹配成功。采用本发明的多方数值型记录匹配方法,可以在更短的时间内,更加安全有效地识别出重复的数据对象;通过证明若属性中最大最小值的相似度大于阈值,则任意两个属性值的相似度均大于阈值,只需安全快速地查找出各属性的最大最小值,即可判断各数值型记录是否匹配成功,保证了高效性。
-