-
公开(公告)号:CN117688257B
公开(公告)日:2024-07-05
申请号:CN202410120177.9
申请日:2024-01-29
Applicant: 东北大学
IPC: G06F16/9537 , G06F18/23213 , G06F18/22 , G06N3/092
Abstract: 本发明属于智能交通技术领域,公开了一种面向异构用户行为模式的长期轨迹预测方法。度量轨迹中多个维度的相似性,构建可学习的距离权重矩阵,获得融合多维距离得分;构建邻接矩阵,进行轨迹聚类,聚类结果用于强化学习中优化可学习的距离权重矩阵中的参数;使用轨迹聚类每一个聚类簇中的轨迹数据训练轨迹预测模型,训练后的轨迹预测模型作为轨迹预测。本发明将具有相同行为模式的轨迹划分在一个类内差异较小的簇中,然后使用引入时间和速度信息编码的堆叠Transform结构来提取并融合多属性轨迹中的多维特征,并进一步产生长期轨迹预测结果。对于智能交通场景,面向异构用户行为模式的长期轨迹预测方法具有相当的适用价值。
-
公开(公告)号:CN117688257A
公开(公告)日:2024-03-12
申请号:CN202410120177.9
申请日:2024-01-29
Applicant: 东北大学
IPC: G06F16/9537 , G06F18/23213 , G06F18/22 , G06N3/092
Abstract: 本发明属于智能交通技术领域,公开了一种面向异构用户行为模式的长期轨迹预测方法。度量轨迹中多个维度的相似性,构建可学习的距离权重矩阵,获得融合多维距离得分;构建邻接矩阵,进行轨迹聚类,聚类结果用于强化学习中优化可学习的距离权重矩阵中的参数;使用轨迹聚类每一个聚类簇中的轨迹数据训练轨迹预测模型,训练后的轨迹预测模型作为轨迹预测。本发明将具有相同行为模式的轨迹划分在一个类内差异较小的簇中,然后使用引入时间和速度信息编码的堆叠Transform结构来提取并融合多属性轨迹中的多维特征,并进一步产生长期轨迹预测结果。对于智能交通场景,面向异构用户行为模式的长期轨迹预测方法具有相当的适用价值。
-