-
公开(公告)号:CN111414956B
公开(公告)日:2024-01-30
申请号:CN202010189494.8
申请日:2020-03-18
Applicant: 东北大学
IPC: G06V10/77 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/096
Abstract: 本发明公开一种肺部CT图像中模糊模式的多示例学习识别方法,属于CT图像处理技术领域。该方法首先对不同模式下的肺部CT图像进行随机抽样并进行预处理,其次对预处理后的样本采用迁移学习的方法进行特征提取,并采用主成分分析法对特征进行降维,最后采用优化后的多示例学习的方案对不同模式的肺部CT图像进行分类。本发明把卷积神经网络和多示例学习相结合,能够在数据量不足且存在未知的示例标签的情况下利用CNN提取样本特征,采用网格搜索优化多示例学习的参数,有效提高了分类准确率。
-
公开(公告)号:CN111414956A
公开(公告)日:2020-07-14
申请号:CN202010189494.8
申请日:2020-03-18
Applicant: 东北大学
Abstract: 本发明公开一种肺部CT图像中模糊模式的多示例学习识别方法,属于CT图像处理技术领域。该方法首先对不同模式下的肺部CT图像进行随机抽样并进行预处理,其次对预处理后的样本采用迁移学习的方法进行特征提取,并采用主成分分析法对特征进行降维,最后采用优化后的多示例学习的方案对不同模式的肺部CT图像进行分类。本发明把卷积神经网络和多示例学习相结合,能够在数据量不足且存在未知的示例标签的情况下利用CNN提取样本特征,采用网格搜索优化多示例学习的参数,有效提高了分类准确率。
-