-
公开(公告)号:CN114971819A
公开(公告)日:2022-08-30
申请号:CN202210309611.9
申请日:2022-03-28
Applicant: 东北大学
Abstract: 本发明公开一种基于多智能体强化学习算法在联邦学习下的用户竞价方法及装置,方法包括:获取联邦学习平台发布的学习任务,样本客户端利用强化学习算法向联邦平台上传竞标信息,平台通过算法选取样本客户端后下向被选中的样本客户端下发全局共享模型,被选中的样本客户端进行本地训练并上传更新参数,平台将上传的更新模型参数按照聚合算法进行聚合并对全局模型中的模型参数进行更新。以完成联邦学习平台发布的学习任务,此方法在实现联邦学习参与用户的动态竞价的同时缓解了模型的过拟合,解决了现有基于拍卖的激励机制由于用户提交竞价策略后,用户竞价策略在后续训练过程中不会发生改变而导致联邦学习公平性缺失以及模型过拟合的问题。
-
公开(公告)号:CN115358831A
公开(公告)日:2022-11-18
申请号:CN202211120985.2
申请日:2022-09-15
Applicant: 东北大学
Abstract: 本发明公开一种基于多智能体强化学习算法在联邦学习下的用户竞价方法及装置,方法包括:获取联邦学习平台发布的学习任务,样本客户端利用强化学习算法向联邦平台上传竞标信息,平台通过算法选取样本客户端后下向被选中的样本客户端下发全局共享模型,被选中的样本客户端进行本地训练并上传更新参数,平台将上传的更新模型参数按照聚合算法进行聚合并对全局模型中的模型参数进行更新。以完成联邦学习平台发布的学习任务,此方法在实现联邦学习参与用户的动态竞价的同时缓解了模型的过拟合,解决了现有基于拍卖的激励机制由于用户提交竞价策略后,用户竞价策略在后续训练过程中不会发生改变而导致联邦学习公平性缺失以及模型过拟合的问题。
-