基于知识增强的深度强化学习交互式推荐系统及方法

    公开(公告)号:CN114117220A

    公开(公告)日:2022-03-01

    申请号:CN202111420425.4

    申请日:2021-11-26

    Applicant: 东北大学

    Abstract: 本发明提供一种基于知识增强的深度强化学习交互式推荐系统及方法,涉及推荐技术领域。本系统包括数据采集清洗模块、环境模拟器构建模块、知识图谱构建模块、图卷积模块、用户状态表示模块、策略网络模块和值网络模块。本发明结合知识图谱中丰富的语义信息,利用图卷积网络结构,沿着高阶连通性递归地传播相邻实体的嵌入表示,并采用图注意力网络思想,利用知识图谱中丰富的语义信息增强项目表示,同时又融合了用户‑项目二部图,从集体的用户行为充分挖掘潜在关系,从而准确捕捉用户的动态偏好,并利用深度强化学习自主学习最优推荐策略,从而提高推荐准确度。

    基于知识增强的深度强化学习交互式推荐系统及方法

    公开(公告)号:CN114117220B

    公开(公告)日:2024-09-20

    申请号:CN202111420425.4

    申请日:2021-11-26

    Applicant: 东北大学

    Abstract: 本发明提供一种基于知识增强的深度强化学习交互式推荐系统及方法,涉及推荐技术领域。本系统包括数据采集清洗模块、环境模拟器构建模块、知识图谱构建模块、图卷积模块、用户状态表示模块、策略网络模块和值网络模块。本发明结合知识图谱中丰富的语义信息,利用图卷积网络结构,沿着高阶连通性递归地传播相邻实体的嵌入表示,并采用图注意力网络思想,利用知识图谱中丰富的语义信息增强项目表示,同时又融合了用户‑项目二部图,从集体的用户行为充分挖掘潜在关系,从而准确捕捉用户的动态偏好,并利用深度强化学习自主学习最优推荐策略,从而提高推荐准确度。

Patent Agency Ranking