-
-
公开(公告)号:CN112132023A
公开(公告)日:2020-12-25
申请号:CN202011005334.X
申请日:2020-09-22
Applicant: 上海应用技术大学
Abstract: 本发明提供了一种基于多尺度上下文增强网络的人群计数方法,包括:输入一张图片,首先经过特征提取后,获得浅层特征与深层特征,然后通过特征融合模块进行特征融合,并将融合到的特征送入多尺度感知模块,最后通过上下文增强模块对特征的空间与通道信息进行编码,获得具有人群分布特征的密度图。通过对密度图像素进行求和可以得到当前图片估计的人数。本发明提供一种基于多尺度上下文增强网络的人群计数方法,可以有效地应对人群计数中存在的多尺度问题,并且通过对特征图的空间与通道上下文信息进行建模,可以对复杂场景的人群进行更精确的计数与密度估计。该发明具有较高的鲁棒性,能向大型人群聚集场所的安全与规划方面提供准确的数据。
-
公开(公告)号:CN112132023B
公开(公告)日:2024-05-17
申请号:CN202011005334.X
申请日:2020-09-22
Applicant: 上海应用技术大学
Abstract: 本发明提供了一种基于多尺度上下文增强网络的人群计数方法,包括:输入一张图片,首先经过特征提取后,获得浅层特征与深层特征,然后通过特征融合模块进行特征融合,并将融合到的特征送入多尺度感知模块,最后通过上下文增强模块对特征的空间与通道信息进行编码,获得具有人群分布特征的密度图。通过对密度图像素进行求和可以得到当前图片估计的人数。本发明提供一种基于多尺度上下文增强网络的人群计数方法,可以有效地应对人群计数中存在的多尺度问题,并且通过对特征图的空间与通道上下文信息进行建模,可以对复杂场景的人群进行更精确的计数与密度估计。该发明具有较高的鲁棒性,能向大型人群聚集场所的安全与规划方面提供准确的数据。
-
-