-
公开(公告)号:CN109781706A
公开(公告)日:2019-05-21
申请号:CN201910111235.0
申请日:2019-02-11
Applicant: 上海应用技术大学
Abstract: 本发明提供了一种基于PCA-Stacking建立的食源性致病菌拉曼光谱识别模型的训练方法。本发明针对拉曼峰相似的两种食源性致病菌——大肠杆菌0157:H7以及布鲁氏菌S2株识别精度不足的问题,提出一种基于PCA-Stacking的拉曼集成分类算法,找到了鲁棒性更好的数学统计模型和计算方法。针对拉曼光谱中存在的毛刺,基线漂移问题,使用Savitzky-Golay滤波器和非对称最小二乘实现光谱的预处理。通过网格搜索模型参数,证明了Stacking集成算法相比于K近邻、逻辑回归、支持向量机单一算法模型有更高的分类准确率。
-
公开(公告)号:CN110245713A
公开(公告)日:2019-09-17
申请号:CN201910534517.1
申请日:2019-06-19
Applicant: 上海应用技术大学
Abstract: 本发明公开了一种食源性致病菌分类方法,包括:卷积神经网络的搭建以及用于模型评估的k折交叉验证。本发明使用基于卷积神经网络的方法,通过对卷积神经网络的结构配置及优化提高了食源性致病菌光谱分类的准确率。本发明主要解决的技术问题是通过对卷积神经网络建模实现食源性致病菌光谱数据分类的自动化,给食品安全从业者提供参考,提高食品安全检测的效率。
-