-
公开(公告)号:CN112766217A
公开(公告)日:2021-05-07
申请号:CN202110131884.4
申请日:2021-01-30
Applicant: 上海工程技术大学
Abstract: 本发明涉及一种基于解纠缠和特征级差异学习的跨模态行人重识别方法,包括:采用可见光摄像机和红外摄像机采集多张行人图片形成数据集;选取可见光模态的两张图像记为x1和x2、选取红外模态的两张图像记为y1和y3,图像x1和y1共享身份信息,图像x2和y3不共享身份信息;获取自编码模型,分别对图像x1、x2、y1和y3解纠缠出风格特征和内容特征;获取生成与判别网络,对风格特征和内容特征进行重构得到多个新图像;获取特征级差异学习网络,对多个新图像和原图像进行特征学习,获取行人识别结果。与现有技术相比,本发明解决了可能存在的跨模态图像间内容信息(如姿态、体态)相近的问题、提升了模型判别的泛化能力、减少了模态间和模态内的差异。
-
公开(公告)号:CN112766217B
公开(公告)日:2022-08-26
申请号:CN202110131884.4
申请日:2021-01-30
Applicant: 上海工程技术大学
Abstract: 本发明涉及一种基于解纠缠和特征级差异学习的跨模态行人重识别方法,包括:采用可见光摄像机和红外摄像机采集多张行人图片形成数据集;选取可见光模态的两张图像记为x1和x2、选取红外模态的两张图像记为y1和y3,图像x1和y1共享身份信息,图像x2和y3不共享身份信息;获取自编码模型,分别对图像x1、x2、y1和y3解纠缠出风格特征和内容特征;获取生成与判别网络,对风格特征和内容特征进行重构得到多个新图像;获取特征级差异学习网络,对多个新图像和原图像进行特征学习,获取行人识别结果。与现有技术相比,本发明解决了可能存在的跨模态图像间内容信息(如姿态、体态)相近的问题、提升了模型判别的泛化能力、减少了模态间和模态内的差异。
-
公开(公告)号:CN112257625B
公开(公告)日:2022-12-16
申请号:CN202011176952.0
申请日:2020-10-29
Applicant: 上海工程技术大学
IPC: G06V20/59 , G06V40/16 , G06V10/25 , G06V10/26 , G06V10/764
Abstract: 本发明涉及一种基于车正脸特征的车辆重识别方法,包括获取车辆正脸图像,处理后得到车前挡风玻璃区域各物体的掩膜;获取所有车辆驾驶员和副驾驶位人员的掩膜,提取分割出的车辆驾驶员和副驾驶位人员的特征;将当前车辆驾驶员特征与检索数据集中所有图像的车辆驾驶员特征进行度量计算,将距离由小到大排序;判断当前车辆是否具有副驾驶位人员特征,若是,则将该副驾驶位人员特征与排序后的前十张具有副驾驶位人员特征再次进行度量计算,将距离由小到大重排序,否则,剔除排序后的前十张具有副驾驶位人员的特征的图像;最后查询的车辆图像与距离最小的目标图像,将其判断为同一车辆个体。与现有技术相比,本发明具有识别精度高、应用广泛等优点。
-
公开(公告)号:CN112257625A
公开(公告)日:2021-01-22
申请号:CN202011176952.0
申请日:2020-10-29
Applicant: 上海工程技术大学
Abstract: 本发明涉及一种基于车正脸特征的车辆重识别方法,包括获取车辆正脸图像,处理后得到车前挡风玻璃区域各物体的掩膜;获取所有车辆驾驶员和副驾驶位人员的掩膜,提取分割出的车辆驾驶员和副驾驶位人员的特征;将当前车辆驾驶员特征与检索数据集中所有图像的车辆驾驶员特征进行度量计算,将距离由小到大排序;判断当前车辆是否具有副驾驶位人员特征,若是,则将该副驾驶位人员特征与排序后的前十张具有副驾驶位人员特征再次进行度量计算,将距离由小到大重排序,否则,剔除排序后的前十张具有副驾驶位人员的特征的图像;最后查询的车辆图像与距离最小的目标图像,将其判断为同一车辆个体。与现有技术相比,本发明具有识别精度高、应用广泛等优点。
-
-
-