一种基于通用扰动的对抗样本生成方法及系统

    公开(公告)号:CN113627597B

    公开(公告)日:2023-10-13

    申请号:CN202110922756.1

    申请日:2021-08-12

    Applicant: 上海大学

    Abstract: 本发明提供一种基于通用扰动的对抗样本生成方法及系统,属于机器学习领域,对抗样本生成方法包括:获取训练样本集;随机初始化一个与ViT模型的输出图像尺寸相同的初始扰动图像;ViT模型包括多个相同的单元,每个单元均包括多个注意力算子;根据训练样本集及ViT模型的各注意力算子,对初始扰动图像进行迭代优化,得到最佳通用扰动图像;将最佳通用扰动线性加在待训练样本集中的样本图像中,得到对应的终极对抗图像。在不影响视觉效果的前提下将正常的训练样本转化为对抗样本,采用最终的对抗样本对ViT模型进行训练,可以提高模型的抗干扰能力和鲁棒性。

    一种基于通用扰动的对抗样本生成方法及系统

    公开(公告)号:CN113627597A

    公开(公告)日:2021-11-09

    申请号:CN202110922756.1

    申请日:2021-08-12

    Applicant: 上海大学

    Abstract: 本发明提供一种基于通用扰动的对抗样本生成方法及系统,属于机器学习领域,对抗样本生成方法包括:获取训练样本集;随机初始化一个与ViT模型的输出图像尺寸相同的初始扰动图像;ViT模型包括多个相同的单元,每个单元均包括多个注意力算子;根据训练样本集及ViT模型的各注意力算子,对初始扰动图像进行迭代优化,得到最佳通用扰动图像;将最佳通用扰动线性加在待训练样本集中的样本图像中,得到对应的终极对抗图像。在不影响视觉效果的前提下将正常的训练样本转化为对抗样本,采用最终的对抗样本对ViT模型进行训练,可以提高模型的抗干扰能力和鲁棒性。

Patent Agency Ranking