-
公开(公告)号:CN102961129A
公开(公告)日:2013-03-13
申请号:CN201210416931.0
申请日:2012-10-26
Applicant: 上海交通大学无锡研究院
IPC: A61B5/0402
Abstract: 本发明公布了一种远程医疗的异常心电张量分析方法,首先通过远程方式采集大量的标准12导联心电数据,然后通过短时傅立叶变换将心电转换为高维度的张量心电数据。然后以高维张量心电数据直接作为特征,使用直接以张量数据直接作为输入的特征抽取和特征降维的算法提取出直接用来分类的心电特征。由于这种方法是基于TTV变换法则的,所以最终可以得到基于向量存储的特征,然后使用SVM分类方法对这些向量特征进行分类。这种方法以张量心电数据直接作为输入,充分利用了心电的多导联心电的结构信息,消除了原先单导联心电单独分析带来的不精准缺陷,实现了心电分析的有效性。
-
公开(公告)号:CN102961129B
公开(公告)日:2015-11-25
申请号:CN201210416931.0
申请日:2012-10-26
Applicant: 上海交通大学无锡研究院
IPC: A61B5/0402
Abstract: 本发明公布了一种远程医疗的异常心电张量分析方法,首先通过远程方式采集大量的标准12导联心电数据,然后通过短时傅立叶变换将心电转换为高维度的张量心电数据。然后以高维张量心电数据直接作为特征,使用直接以张量数据直接作为输入的特征抽取和特征降维的算法提取出直接用来分类的心电特征。由于这种方法是基于TTV变换法则的,所以最终可以得到基于向量存储的特征,然后使用SVM分类方法对这些向量特征进行分类。这种方法以张量心电数据直接作为输入,充分利用了心电的多导联心电的结构信息,消除了原先单导联心电单独分析带来的不精准缺陷,实现了心电分析的有效性。
-