一种基于学习模型可触发性的代码语义冗余度量验证方法

    公开(公告)号:CN116301875A

    公开(公告)日:2023-06-23

    申请号:CN202211088884.1

    申请日:2022-09-07

    Abstract: 本发明涉及一种基于学习模型可触发性的代码语义冗余度量验证方法,包括以下步骤:合成混合代码数据集,包含恶意代码和非恶意代码,将该混合代码数据集分为训练集和测试集;在训练集中插入触发器并作为第一训练集,对第一训练集进行代码语义表征,利用对抗扰动投毒,获取中毒的代码语义表征结果,并将中毒的代码语义表征结果处理为特征向量,将该特征向量输入良性神经网络模型进行训练,获取后门神经网络模型;在测试集中插入触发器,获取第一测试集,对第一测试集进行处理后,输入到后门神经网络模型中,根据后门神经网络模型的输出结果验证输入样本中是否包含语义冗余空间。与现有技术相比,该发明能够准确验证并度量代码数据的语义冗余空间。

Patent Agency Ranking