-
公开(公告)号:CN104837019A
公开(公告)日:2015-08-12
申请号:CN201510215888.5
申请日:2015-04-30
Applicant: 上海交通大学
IPC: H04N19/40 , H04N19/147 , H04N19/103
Abstract: 一种基于支持向量机的AVS到HEVC优化视频转码方法,通过采集AVS码流的特征向量,并利用支持向量机对其进行学习并得到训练模型,将提取出的AVS特征向量分为在HEVC中相应位置的CU划分或不划分两类,在转码阶段以训练模型预测CU是否需要划分,当得到当前CU需要划分时,再在当前HEVC的深度下分别进行2N×2N模式和SKIP模式计算,并从这两种模式中选择出最优预测模式,当预测得到当前CU不需要进行划分,则按照HEVC标准编码过程进行最优模式选择。本发明结合了机器学习基本思想,将整个转码过程分为了训练阶段和转码阶段,通过学习得到训练模型,预测HEVC中CU的划分,并结合快速模式选择算法,既提高了转码的速度,又保证了转码后视频的整体视频质量。
-
公开(公告)号:CN104837019B
公开(公告)日:2018-01-02
申请号:CN201510215888.5
申请日:2015-04-30
Applicant: 上海交通大学
IPC: H04N19/40 , H04N19/147 , H04N19/103
Abstract: 一种基于支持向量机的AVS到HEVC优化视频转码方法,通过采集AVS码流的特征向量,并利用支持向量机对其进行学习并得到训练模型,将提取出的AVS特征向量分为在HEVC中相应位置的CU划分或不划分两类,在转码阶段以训练模型预测CU是否需要划分,当得到当前CU需要划分时,再在当前HEVC的深度下分别进行2N×2N模式和SKIP模式计算,并从这两种模式中选择出最优预测模式,当预测得到当前CU不需要进行划分,则按照HEVC标准编码过程进行最优模式选择。本发明结合了机器学习基本思想,将整个转码过程分为了训练阶段和转码阶段,通过学习得到训练模型,预测HEVC中CU的划分,并结合快速模式选择算法,既提高了转码的速度,又保证了转码后视频的整体视频质量。
-