-
公开(公告)号:CN111160519A
公开(公告)日:2020-05-15
申请号:CN201911214732.X
申请日:2019-12-02
Applicant: 上海交通大学 , 咪咕文化科技有限公司
Abstract: 本发明提供一种基于结构冗余检测的卷积神经网络模型剪枝方法,其中:首先在训练集上训练卷积神经网络模型,并在验证集上对其进行评估;然后尝试剪枝神经网络模型的不同子结构并微调其余结构,以检测被剪枝的子结构的冗余性,在每次迭代中,如果剪枝后的神经网络模型无法通过微调重新获得大部分丢失的精度,则将剪枝的结构还原。重复该方法,直到模型所有子结构的冗余性都被检验;最后在训练集和验证集上重新初始化并训练剪枝后的模型,得到最终的优化模型。本发明减少了神经网络的资源消耗,改善了现有模型剪枝方法实现复杂的问题。
-
公开(公告)号:CN113688694B
公开(公告)日:2023-10-27
申请号:CN202110884878.6
申请日:2021-08-03
Applicant: 上海交通大学
IPC: G06V20/40 , G06V10/74 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/0475 , G06N3/084 , G06N3/094
Abstract: 本发明提供一种基于非配对学习的提升视频清晰度的方法及装置,包括:对于给定的低清晰度视频,选择内容相似的非配对高清晰度视频作为参考并进行降采样使其相似度相近,取高低清晰度视频关键帧中的亮度分量进行量化并随机裁切图像块,形成低清晰度‑非配对高清晰度图像数据集;建立基于卷积神经网络的低清晰度图像生成器、低清晰度图像判别器和高清晰度图像生成器;通过综合目标函数训练生成对抗网络,使得两个生成器都能实现更好的低高清晰度图像域之间的相互映射。本发明使用视频内容主体相似的非配对真实低高清视频进行训练,跳脱出了以往配对学习方法中特定质量退化方式的限制,利用非配对学习的方法实现了低清晰度视频图像的联合增强。
-
公开(公告)号:CN112102166A
公开(公告)日:2020-12-18
申请号:CN202010871696.0
申请日:2020-08-26
Applicant: 上海交通大学
Abstract: 本发明提供一种联合超分辨率、色域扩展和逆色调映射方法及设备,其中:S1:将高分辨率、高色域和高动态范围的视频帧下转换为低分辨率、低色域和标准动态范围的视频帧,组成训练数据集和测试数据集;S2:基于局部残差学习和全局残差学习设计一个卷积神经网络;S3:使用所述训练数据集不断训练优化所述卷积神经网络,得到能完成联合超分辨率、色域扩展和逆色调映射的卷积神经网络;S4:将所述测试数据集中低分辨率、低色域和标准动态范围的视频帧输入至S3训练后得到的所述卷积神经网络,得到高分辨率、高色域和高动态范围的视频帧。本发明改善了现有方法的伪影问题,提高了主观和客观质量。
-
公开(公告)号:CN111160519B
公开(公告)日:2023-12-08
申请号:CN201911214732.X
申请日:2019-12-02
Applicant: 上海交通大学 , 咪咕文化科技有限公司
IPC: G06N3/0464 , G06N3/082
Abstract: 本发明提供一种基于结构冗余检测的卷积神经网络模型剪枝方法,其中:首先在训练集上训练卷积神经网络模型,并在验证集上对其进行评估;然后尝试剪枝神经网络模型的不同子结构并微调其余结构,以检测被剪枝的子结构的冗余性,在每次迭代中,如果剪枝后的神经网络模型无法通过微调重新获得大部分丢失的精度,则将剪枝的结构还原。重复该方法,直到模型所有子结构的冗余性都被检验;最后在训练集和验证集上重新初始化并训练剪枝后的模型,得到最终的优化模型。本发明减少了神经网络的资源消耗,改善了现有模型剪枝方法实现复杂的问题。
-
公开(公告)号:CN112102166B
公开(公告)日:2023-12-01
申请号:CN202010871696.0
申请日:2020-08-26
Applicant: 上海交通大学
IPC: G06T3/40 , G06T5/00 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明提供一种联合超分辨率、色域扩展和逆色调映射方法及设备,其中:S1:将高分辨率、高色域和高动态范围的视频帧下转换为低分辨率、低色域和标准动态范围的视频帧,组成训练数据集和测试数据集;S2:基于局部残差学习和全局残差学习设计一个卷积神经网络;S3:使用所述训练数据集不断训练优化所述卷积神经网络,得到能完成联合超分辨率、色域扩展和逆色调映射的卷积神经网络;S4:将所述测试数据集中低分辨率、低色域和标准动态范围的视频帧输入至S3训练后得到的所述卷积神经网络,得到高分辨率、高色域和高动态范围的视频帧。本发明改善了现有方法的伪影问题,提高了主观和客观质量。
-
公开(公告)号:CN113688694A
公开(公告)日:2021-11-23
申请号:CN202110884878.6
申请日:2021-08-03
Applicant: 上海交通大学
Abstract: 本发明提供一种基于非配对学习的提升视频清晰度的方法及装置,包括:对于给定的低清晰度视频,选择内容相似的非配对高清晰度视频作为参考并进行降采样使其相似度相近,取高低清晰度视频关键帧中的亮度分量进行量化并随机裁切图像块,形成低清晰度‑非配对高清晰度图像数据集;建立基于卷积神经网络的低清晰度图像生成器、低清晰度图像判别器和高清晰度图像生成器;通过综合目标函数训练生成对抗网络,使得两个生成器都能实现更好的低高清晰度图像域之间的相互映射。本发明使用视频内容主体相似的非配对真实低高清视频进行训练,跳脱出了以往配对学习方法中特定质量退化方式的限制,利用非配对学习的方法实现了低清晰度视频图像的联合增强。
-
-
-
-
-