一种基于PICA-VMD和Hilbert边际谱的轴向柱塞泵空化等级识别方法

    公开(公告)号:CN110991544A

    公开(公告)日:2020-04-10

    申请号:CN201911259308.7

    申请日:2019-12-10

    Abstract: 本发明公开了一种基于PICA-VMD和Hilbert边际谱的轴向柱塞泵空化等级识别方法,该方法的步骤如下:采集轴向柱塞泵壳体处的振动信号并构建初始样本集;采用小波包自适应阈值对原始信号进行去噪;对去噪后的信号进行PICA-VMD变换得出对应的Hilbert边际谱,提取边际谱中的边际谱幅值作为故障特征并构建特征集;采用PCA法对提取的故障特征进行降维;最后将降维后的故障特征集输入到多分类SVM模型内完成空化等级的识别。本发明方法能有效地识别出轴向柱塞泵的空化等级,Hilbert边际谱幅值能够较好地反映微弱的轴向柱塞泵空化故障特征。

    基于循环平稳理论和Stacking模型的液压缸泄漏故障诊断方法

    公开(公告)号:CN113820079A

    公开(公告)日:2021-12-21

    申请号:CN202110926053.6

    申请日:2021-08-12

    Abstract: 本发明提供一种基于循环平稳理论和Stacking模型的液压缸泄漏故障诊断方法,涉及液压缸泄漏的故障诊断技术领域,该方法包括:步骤S1:采集不同泄漏程度下液压缸的出口压力信号,构建初始样本集;步骤S2:对压力信号进行去噪,将压力信号分解为循环周期信号和残余信号;步骤S3:分别提取一阶循环频率特征CS1和二阶循环频率特征CS2,构成故障特征集;步骤S4:将故障特征集进行预处理,将预处理后的故障特征集作为训练数据,完成对模型的训练;步骤S5:根据得到待识别的液压缸压力信号的故障特征集,将故障特征集进行数据标准化后,输入到训练好的模型中,完成液压缸泄漏程度的故障诊断。本发明能够有更高的识别准确率。

    一种柱塞泵空化程度检测方法、装置及终端

    公开(公告)号:CN111401136A

    公开(公告)日:2020-07-10

    申请号:CN202010109714.1

    申请日:2020-02-22

    Abstract: 本发明公开了一种柱塞泵空化程度检测方法、装置、储存介质及终端,其中,柱塞泵空化程度检测方法,包括:获取柱塞泵空化时壳体的三轴振动信号;将所述三轴振动信号进行切分,得到振动信号片段集;将所述振动信号片段集按照振动信号的三个方向与RGB图片三色通道的对应关系转化成目标图片集;将所述目标图片集输入到训练好的模型中,得到所述柱塞泵的空化程度。本发明采用的将振动信号转换成RGB图片并结合卷积神经网络的方法,实现了对柱塞泵空化程度的识别,并且在不使用附加降噪方法的情况下,对有噪声的振动信号依然具有良好的性能。

Patent Agency Ranking