-
公开(公告)号:CN119402383A
公开(公告)日:2025-02-07
申请号:CN202411517732.8
申请日:2024-10-29
Applicant: 上海交通大学
IPC: H04L43/08 , H04L43/0876 , H04L41/14
Abstract: 本发明涉及一种基于多模态时空数据建模的多层网络状态预测方法,包括以下步骤:获取多层动态网络中能够反映各节点交互的时空多模态数据;基于时空多模态数据,通过伯努利分布和泊松分布将节点的连通性和属性信息与网络群组相关联,建立具有共享群组的多层时空Hawkes过程,以捕获每层节点之间从历史事件到后续事件的相互作用,构建多模态时空模型;利用具有局部收敛性的分层期望‑极大值算法进行多模态时空模型的参数求解,得到网络状态预测结果。与现有技术相比,本发明具有建模精准、预测准确等优点。
-
公开(公告)号:CN118820749A
公开(公告)日:2024-10-22
申请号:CN202410943180.0
申请日:2024-07-15
Applicant: 上海交通大学
IPC: G06F18/213 , G06F18/22 , G06N3/094 , G06N3/048 , G06N3/088
Abstract: 本发明涉及一种基于分支对抗网络的多元数据融合及失效模式识别方法,包括以下步骤:获取历史飞机发动机的传感器信号数据、失效模式标签以及总运行时间并进行数据预处理,构建数据集;将预处理后的数据集载入构建的多分支深度学习模型,利用对抗训练机制进行模型训练,所述多分支深度学习模型用于构建特异于失效模式的HI,每一个分支层针对一种失效模式的HI构建;获取在役发动机的传感器信号数据,输入训练完成的多分支深度学习模型,得到对应不同失效模式的候选HI,提取各个候选HI的特征,基于所提取的特征进行失效模式识别,进而实现RUL预测。与现有技术相比,本发明具有能够对不同退化模式进行准确描述、可解释性和灵活性好等优点。
-