-
公开(公告)号:CN113742778B
公开(公告)日:2023-10-31
申请号:CN202111092031.0
申请日:2021-09-17
Applicant: 上海交通大学
Abstract: 本发明涉及一种基于联邦学习和ALQ压缩的分布式机器学习方法及系统,所述系统包括一个服务器端和多个客户端,服务器端的功能包括初始化全局机器学习模型、分发模型至客户端、收集客户端的模型并计算新的全局模型;客户端的功能包括接收全局模型、用本地数据对模型进行训练以及上传训练好的本地模型,服务器端和客户端之间的通信数据通过ALQ压缩算法进行压缩。与现有技术相比,本发明具有保证数据隐私安全性、适用于对通信量和扩展性有严格要求的空间信息网络等优点。
-
公开(公告)号:CN113742778A
公开(公告)日:2021-12-03
申请号:CN202111092031.0
申请日:2021-09-17
Applicant: 上海交通大学
Abstract: 本发明涉及一种基于联邦学习和ALQ压缩的分布式机器学习方法及系统,所述系统包括一个服务器端和多个客户端,服务器端的功能包括初始化全局机器学习模型、分发模型至客户端、收集客户端的模型并计算新的全局模型;客户端的功能包括接收全局模型、用本地数据对模型进行训练以及上传训练好的本地模型,服务器端和客户端之间的通信数据通过ALQ压缩算法进行压缩。与现有技术相比,本发明具有保证数据隐私安全性、适用于对通信量和扩展性有严格要求的空间信息网络等优点。
-