基于结构化稀疏的可伸缩压缩视频张量信号采集与重构系统

    公开(公告)号:CN110620927B

    公开(公告)日:2022-05-27

    申请号:CN201910826964.4

    申请日:2019-09-03

    Abstract: 本发明提供了一种基于结构化稀疏的可伸缩压缩视频张量信号采集与重构系统,包括:张量基构造模块、张量分解模块、可伸缩传感模块和可伸缩重构模块,其中,所述张量基构造模块对视频信号的关键帧块利用数据驱动张量子空间联合模型以及分层张量子空间学习生成稀疏基矩阵。本发明提供的可伸缩压缩张量采样契合了视频采样过程的分布式渐进式的结构,对结构化稀疏基矩阵的渐进构造也提升了重构的精确度和效率,从而提高了视频信号的可伸缩采样效率,在不同的采样压缩率下相比其他方法取得了重构增益,同时也具备良好的可扩展性。

    一种压缩视频张量信号采集与重构系统及方法

    公开(公告)号:CN110708549B

    公开(公告)日:2021-06-01

    申请号:CN201910854384.6

    申请日:2019-09-10

    Abstract: 本发明提供了一种压缩视频张量信号采集与重构系统及方法,包括:结构化稀疏张量字典学习模块、张量传感模块和重构处理模块,其中:结构化稀疏张量字典学习模块首先利用子空间聚类的方法得到训练集,然后利用张量子空间学习方法以及基于块相关最小化的块稀疏张量字典学习方法得到字典,张量传感模块对视频张量信号以图像张量块的形式进行投影,所得的数据最后在重构处理模块中被解码重构。本发明提供压缩采样的同时还契合了视频采样过程的分布式渐进式的结构,对结构化稀疏字典矩阵的特殊构造也提升了重构的精确度和效率,提高了视频信号的采样效率,在不同的采样压缩率下相比其他方法取得了重构增益,同时也具备良好的可扩展性。

Patent Agency Ranking