-
公开(公告)号:CN107515854A
公开(公告)日:2017-12-26
申请号:CN201710625669.3
申请日:2017-07-27
Applicant: 上海交通大学
CPC classification number: G06F17/279 , G06F17/30734 , G06N5/041 , G06Q50/01
Abstract: 本发明公开了一种基于带权时序文本网络的时序社区以及话题的检测方法,包括:基于原始数据构建带权时序文本网络;针对带权时序文本网络,构建基于主题模型的生成模型;利用吉布斯采样方法构建生成模型的推断过程;根据模型的推断过程,对带权时序文本网络进行训练,提取出社区信息,主题信息,社区与主题的对应关系,用户在社区内影响力与参与度随时间变化特性;根据提取出的信息,对用户行为进行预测。本发明对时序文本网络中的时间信息和权重信息了进行全新建模,考虑了网络中边的时间信息并对其进行了连续性建模,对带权时序网络进行了全面建模,有利于了解社区在时间尺度上的变化与发展与个人关于社区在时间尺度上的发展。
-
公开(公告)号:CN106250438B
公开(公告)日:2020-07-14
申请号:CN201610595617.1
申请日:2016-07-26
Applicant: 上海交通大学
IPC: G06F16/35 , G06F16/9535 , G06F16/9536 , G06K9/62
Abstract: 本发明提供了一种基于随机游走模型的零引用文章推荐方法及系统,包括:步骤1:构建学术网络模型,通过随机游走法获得每篇论文的第一作者、会议或期刊、机构、发表时间所对应的特征值;步骤2:建立排序模型,并选取经步骤1处理后的论文数据构建训练集;步骤3:通过弱分类器对训练集进行排序;步骤4:判断弱分类器的排序结果是否与训练集的真实排序结果相匹配,得到最优排序模型;步骤5:通过排序模型推荐用户所需零引用文献。本发明使用了全新的论文排序思想,从而使得新发表的论文可以得到更加有效地推荐,便于用户获得最相关的新论文。
-
公开(公告)号:CN106250438A
公开(公告)日:2016-12-21
申请号:CN201610595617.1
申请日:2016-07-26
Applicant: 上海交通大学
Abstract: 本发明提供了一种基于随机游走模型的零引用文章推荐方法及系统,包括:步骤1:构建学术网络模型,通过随机游走法获得每篇论文的第一作者、会议或期刊、机构、发表时间所对应的特征值;步骤2:建立排序模型,并选取经步骤1处理后的论文数据构建训练集;步骤3:通过弱分类器对训练集进行排序;步骤4:判断弱分类器的排序结果是否与训练集的真实排序结果相匹配,得到最优排序模型;步骤5:通过排序模型推荐用户所需零引用文献。本发明使用了全新的论文排序思想,从而使得新发表的论文可以得到更加有效地推荐,便于用户获得最相关的新论文。
-
公开(公告)号:CN107515854B
公开(公告)日:2021-06-04
申请号:CN201710625669.3
申请日:2017-07-27
Applicant: 上海交通大学
Abstract: 本发明公开了一种基于带权时序文本网络的时序社区以及话题的检测方法,包括:基于原始数据构建带权时序文本网络;针对带权时序文本网络,构建基于主题模型的生成模型;利用吉布斯采样方法构建生成模型的推断过程;根据模型的推断过程,对带权时序文本网络进行训练,提取出社区信息,主题信息,社区与主题的对应关系,用户在社区内影响力与参与度随时间变化特性;根据提取出的信息,对用户行为进行预测。本发明对时序文本网络中的时间信息和权重信息了进行全新建模,考虑了网络中边的时间信息并对其进行了连续性建模,对带权时序网络进行了全面建模,有利于了解社区在时间尺度上的变化与发展与个人关于社区在时间尺度上的发展。
-
-
-