-
公开(公告)号:CN116224996A
公开(公告)日:2023-06-06
申请号:CN202211715787.0
申请日:2022-12-28
Applicant: 上海交通大学
IPC: G05D1/02
Abstract: 本发明涉及一种基于对抗强化学习的自动驾驶优化控制方法,包括以下步骤:设计对抗智能体控制部分关键场景因素,以构建对抗场景;利用对抗场景对车辆进行训练,得到优化后的驾驶算法;将优化后的驾驶算法应用于车辆控制器,以相应控制车辆的行驶状态。与现有技术相比,本发明在给定场景下,为本车设计第1代强化学习的驾驶策略,再采用不完全零和博弈构建对抗过程,生成多个对抗智能体与本车的驾驶算法进行对抗,不断迭代优化本车驾驶算法的鲁棒性。由此基于对抗强化学习的方式,以迭代优化得到鲁棒性增强的自动驾驶算法,从而有效提升自动驾驶控制的效率和场景鲁棒性。