一种基于攻击者特性指标的网络攻击路径预测方法

    公开(公告)号:CN112804208B

    公开(公告)日:2021-10-22

    申请号:CN202011629019.4

    申请日:2020-12-30

    Abstract: 本发明提供一种基于攻击者特性指标的网络攻击路径预测方法,首先从攻击者的角度出发,结合攻击图和隐马尔可夫模型,提出网络攻击路径的量化指标,如攻击成本、攻击收益和攻击利润来体现不同意图的攻击者对于最佳攻击路径选取的不同;其次,基于量化指标对攻击图中的攻击路径进行量化和分析,更加有效地描述网络攻防场景;最后,通过将每一条攻击路径上所有漏洞的攻击成本、攻击收益及攻击利润分别相加,得到整条攻击路径的攻击总成本、攻击总获利以及攻击总利润,通过比较各个攻击路径的指标值,从而更加准确地找到攻击者可能攻击的风险较大的一条或多条攻击路径,帮助网络管理员更全面地了解网络安全状况,更高效地保证网络系统安全性。

    一种基于数据混淆的代码保护方法

    公开(公告)号:CN108763877B

    公开(公告)日:2021-07-09

    申请号:CN201810604663.2

    申请日:2018-06-13

    Abstract: 本发明公开了一种基于数据混淆的代码保护方法,对代码中数据进行数据分类,并将分类后的数据分别进行价值挖掘,依据其不同的数据特征采用不同的混淆方法混淆所挖掘出具有混淆意义的有价值的数据。本发明的技术方案包括如下步骤:将待保护代码中数据进行分类,分为个体数据、集合数据与逻辑赋值数据。分别针对个体数据、集合数据与逻辑赋值数据进行价值挖掘,挖掘出有价值的个体数据、有价值的集合数据与有价值的逻辑赋值数据。针对有价值的个体数据、有价值的集合数据与有价值的逻辑赋值数据分别采用不同的数据混淆方法进行数据混淆,数据混淆后的待保护代码为被保护代码。

    基于词频统计和朴素贝叶斯融合模型的漏洞自动分类方法

    公开(公告)号:CN107273752B

    公开(公告)日:2020-12-11

    申请号:CN201710495331.0

    申请日:2017-06-26

    Inventor: 胡昌振 吕坤 张皓

    Abstract: 本发明涉及一种基于词频统计和朴素贝叶斯融合模型的漏洞自动分类方法,属于信息安全技术领域。具体操作为:步骤一、构建一个漏洞数据库,收集漏洞记录。步骤二、确定特权集类别。步骤三、训练词频‑逆向文件频率分类器。步骤四、测试词频‑逆向文件频率分类器分类结果和准确率。步骤五、建立朴素贝叶斯分类器。步骤六、测试朴素贝叶斯分类器分类结果和准确率。步骤七、分类器融合。本发明提出的支持漏洞关联性挖掘的漏洞自动分类法与已有方法相比较,其优点是:本发明方法不仅利用了漏洞数据库中“漏洞描述”字段,同时考虑了漏洞的“可用性评分”、“影响性评分”等属性对漏洞关联性的影响,分类准确率得到大幅提高。

    一种检测隐私数据泄露的方法和装置

    公开(公告)号:CN107330345B

    公开(公告)日:2020-11-27

    申请号:CN201710543518.3

    申请日:2017-07-05

    Abstract: 本发明公开了一种检测隐私数据泄露的方法和装置,应用于Android移动终端中,包括:为Android移动终端中隐私数据生成的变量添加对应的污点标记,将变量及其污点标记保存到根据变量的类型对应分配的存储空间中;按照对包含控制信息的控制流分析后设定的污点传播规则,追踪变量对应的污点标记的传播;在预设的汇集点检测传输的数据是否带有污点标记,是则确定应用存在泄漏隐私数据的行为,否则确定应用不存在泄漏隐私数据的行为。本发明实施例的检测隐私数据泄露的方法和装置,提高了隐私数据泄露检测的准确性,保证了用户的信息安全。

    一种基于最小集合覆盖的模糊测试方法和装置

    公开(公告)号:CN111897733A

    公开(公告)日:2020-11-06

    申请号:CN202010790762.1

    申请日:2020-08-07

    Abstract: 本发明公开了一种基于最小集合覆盖的模糊测试方法和装置,该方法利用深度神经网络为目标二进制程序产生测试用例集,并加入测试用例队列;利用最小集合覆盖理论,从所述测试用例队列中筛选出具有最大化路径覆盖率且测试用例数量最少的最小用例集合,以减少执行效果相同的重复测试用例的数量;以设定的一个或一个以上的测试用例选择标准,对所述最小用例集合中的测试用例进行排序,选择最优测试用例进行后续变异,继而实现模糊测试;将模糊测试过程中产生的有效测试用例加入深度神经网络测试用例训练集,离线地指导深度神经网络进行优化训练。使用本发明能够获得更小测试用例集以及更有效的测试用例,可以针对目标二进制程序进行有效地漏洞检测。

    一种软件漏洞的防护方法和装置

    公开(公告)号:CN106991325B

    公开(公告)日:2020-10-02

    申请号:CN201710121268.4

    申请日:2017-03-02

    Abstract: 本发明公开了一种软件漏洞的防护方法和装置,方法包括:获取多个样本软件的漏洞数据进行统计分析,根据统计分析结果采用对数正态分布描述漏洞类别之间的关联关系并构建漏洞关联关系图;根据一个软件的漏洞数据构建该漏洞关联关系图的漏洞关联关系子图,计算所述漏洞关联关系子图的核度并确定出该软件的核心漏洞;修复所述核心漏洞,以实现对该软件的漏洞的防护。本发明实施例通过对大量样本数据的统计分析结果构建表示漏洞之间关联关系的关联关系图,并构建针对一个具体软件的漏洞关联关系子图,利用该漏洞关联关系子图计算待防护软件的核心漏洞,找到核心漏洞后修复单一核心漏洞进而修复多个与其关联的漏洞,从而实现对漏洞的高效率防护。

    一种基于变量关联树的复杂类型重构方法

    公开(公告)号:CN108897572B

    公开(公告)日:2020-09-15

    申请号:CN201810793950.2

    申请日:2018-07-19

    Abstract: 本发明公开了一种基于变量关联树的复杂类型重构方法,该方法具体为:将待处理的二进制程序转化为汇编程序,并对汇编程序中的各函数单元进行变量关联树VRT的创建;依据变量关联树VRT创建变量地址映射表VAM;根据汇编程序对变量关联树VRT中节点的属性信息进行更新得到最终VRT,同时更新变量地址映射表VAM,最终VRT对应的变量地址映射表VAM包含了汇编程序的基本类型重构结果。识别筛选出根节点的运算符属性为解引用的最终VRT作为指针VRT,其中B+C形式指针VRT对应的复杂类型为结构体,B+V+C形式指针VRT对应的复杂类型为数组,对于B+C形式指针VRT和B+V+C形式指针VRT分别采用不同的方法进行结构体和数组的重构。该方法能够实现快速、有效的复杂类型重构,且重构结果较为准确。

    一种基于集成机器学习算法的双模式入侵检测装置

    公开(公告)号:CN110213287B

    公开(公告)日:2020-07-10

    申请号:CN201910507257.9

    申请日:2019-06-12

    Abstract: 本发明提供一种基于集成机器学习算法的双模式入侵检测系统,包括监控模块、网络入侵检测模块、智能入侵检测模块、串联检测模块及告警模块;监控模块用于根据监控策略从网络流量中获取流量数据;网络入侵检测模块利用入侵检测规则对流量数据进行匹配,若匹配到“黑”规则的流量数据时,启动告警模块,对于未匹配到规则的流量数据,则将其转发至智能入侵检测模块;智能入侵检测模块集成多种机器学习入侵检测算法,利用入侵检测算法分别对接收的流量数据进行检测,当检测结果为攻击流量时,启动告警模块;告警模块在被启动的情况下,发出告警信号或者进行阻断。该系统将两种检测技术结合起来共同检测网络攻击行为,大大提升了检测的精度和检测性能。

    一种基于代数拓扑的网络攻击行为效用计算方法

    公开(公告)号:CN110602082B

    公开(公告)日:2020-06-16

    申请号:CN201910852624.9

    申请日:2019-09-10

    Abstract: 本发明公开了一种基于代数拓扑的网络攻击行为效用计算方法,通过采用代数拓扑理论,建立了正在发生或已经发生的网络攻击行为的准确模型,即建立了网络攻击子行为的胞腔复形结构及网络攻击行为的微分流形,再采用微分流形测地线的数学理论为计算依据,实现了无需人为评分的介入即可对网络攻击行为的效用进行定量的评估。

    一种基于损失效应的网络安全风险评估方法

    公开(公告)号:CN110472419A

    公开(公告)日:2019-11-19

    申请号:CN201910648475.4

    申请日:2019-07-18

    Abstract: 本发明公开了一种基于损失效应的网络安全风险评估方法,该方法对信息系统进行资产识别,计算每个资产节点的服务价值;获得资产节点之间的关联性度量,包括由于资产之间的信任关系产生的关联度和由于资产自身的脆弱性引起的关联度;对效用函数取得反函数得到损失函数,利用损失函数和节点发生损失的概率构建损失不满意度计算公式;基于重要资产生成资产关联图,该资产关联图的路径代价与资产关联度、资产损失价值和损失不满意度有关;在资产关联图中找到从攻击者到重要资产节点的最小代价风险路径;将最小代价风险路径的损失不满意度之和作为网络安全风险评估结果。本发明降低了图模型的空间复杂度,从而降低了评估计算量。

Patent Agency Ranking