-
公开(公告)号:CN116860259A
公开(公告)日:2023-10-10
申请号:CN202311138278.0
申请日:2023-09-05
Applicant: 之江实验室
Abstract: 本说明书公开了一种模型训练和编译器自动调优的方法、装置及设备。所述模型训练的方法包括:获取目标程序,并确定编译器对该目标程序进行编译时的各优化序列;确定出初始优化序列并生成当前样本点,以及,确定初始优化序列对所述目标程序进行编译的第一运行时间;生成邻域样本点,并确定邻域样本点对目标程序进行编译的第二运行时间;判断第一运行时间是否大于第二运行时间,若是,将邻域样本点作为当前样本点;在达到指定迭代次数后,确定运行时间小于预设时间的若干个各候选优化序列,并根据各候选优化序列构建训练样本;通过构建的训练样本对预测模型进行训练。
-
公开(公告)号:CN116777010A
公开(公告)日:2023-09-19
申请号:CN202311080508.2
申请日:2023-08-25
Applicant: 之江实验室
IPC: G06N20/00
Abstract: 本说明书公开了一种模型训练的方法以及任务执行方法及装置,可以将获取到的在指定空间中混合物态在第一时刻下的各物理场数据输入到预测模型中,来训练该预测模型,这样一来,在将训练后的预测模型应用到实际任务执行的过程中时,相比于现有技术并不需要耗费过多的时间来一步步推导出下一时刻的指定空间中混合物态在第二时刻下的各物理场数据,这样不仅提高了预测物理场数据的效率,而且由于在训练阶段,是以混合物态在第一时刻和第二时刻前后之间的质量分布符合质量约束为条件,对预测模型进行训练,所以可以保证预测模型在实际应用中所预测出的物理场数据的准确性。
-
公开(公告)号:CN116737607A
公开(公告)日:2023-09-12
申请号:CN202311029639.8
申请日:2023-08-16
Applicant: 之江实验室
IPC: G06F12/0875 , G06F12/0888 , G06F12/0895 , G06N3/084 , G06N3/047 , G06N3/048 , G06V10/94 , G06V10/774 , G06V10/82
Abstract: 本申请涉及一种样本数据缓存方法、系统、计算机设备和存储介质。所述方法包括:获取用于训练的样本数据列表;若缓存区域的解码样本数据集中不存在与样本数据列表中第一样本数据匹配的解码样本数据,则从解码样本数据集中确定备选解码样本数据;若第一样本数据的重要度与备选解码样本数据的重要度满足预设条件且第一样本数据的解码资源消耗大于备选解码样本数据的解码资源消耗,则对第一样本数据进行解码处理,得到对应的目标解码样本数据;根据目标解码样本数据对缓存区域的解码样本数据集进行更新。采用本方法减少冗余的IO和考虑了数据解码本身的资源消耗,缩短了整体的训练时长,进而提高了训练效率。
-
公开(公告)号:CN116502679B
公开(公告)日:2023-09-05
申请号:CN202310543696.1
申请日:2023-05-15
Applicant: 之江实验室
IPC: G06N3/0464 , G06N3/063 , G06N3/08
Abstract: 本说明书公开了一种模型构建方法、装置、存储介质及电子设备,可以对需要进行测试的各候选模型架构进行筛选,以筛选出通过代理模型预测出的性能参数的准确率较低的部分候选模型架构,来通过部署测试模型的方式获得该候选模型架构的真实性能参数,而针对剩余的候选模型架构,可以直接通过代理模型来获取出性能参数,并且可以通过主动学习的方法,在线对代理模型进行训练,从而可以在保证候选模型架构的性能评估准确率的同时,提升自动化构建深度学习模型的效率。
-
公开(公告)号:CN116661574A
公开(公告)日:2023-08-29
申请号:CN202310860078.X
申请日:2023-07-13
Applicant: 之江实验室
IPC: G06F1/20 , G06F18/214
Abstract: 本说明书公开了一种计算设备散热的方法、装置、存储介质及电子设备,本方法通过确定各时刻的计算设备的芯片的特征以及计算设备的散热单元中冷却介质的特征确定训练样本,并获取散热单元的控制指令作为训练样本的标注,然后针对每个特征维度,根据该维度的特征对训练样本进行排序以确定该维度的样本序列,再确定标注相同且连续的各训练样本组成的待选样本组,并确定包含训练样本数量不小于预设数量的待选样本组作为目标样本组,根据各目标样本组以及各目标样本组对应的标注确定控制规则,进一步对计算设备进行散热控制。本方法通过对历史上控制指令、芯片特征以及散热单元中冷却介质的特征的学习生成控制规则,使计算设备可以自行进行散热控制。
-
公开(公告)号:CN116301904B
公开(公告)日:2023-08-22
申请号:CN202310559970.4
申请日:2023-05-18
Applicant: 之江实验室
IPC: G06F8/41 , G06N3/006 , G06N3/0475 , G06N3/08
Abstract: 本发明公开了一种用于深度学习编译器的算子优化加速方法及装置,目的是减少算子优化空间的搜索时间。该方法首先将神经网络抽象成计算图的形式,再对计算图进行图优化,并为优化后的计算图中的每个算子定义优化空间。然后以LightGBM为代价模型,粒子群优化算法为搜索算法对优化空间进行搜索。在每轮搜索中,对搜索算法输出的候选解采用DBSCAN进行聚类和采样,减少在硬件上的实测次数,进一步提升搜索效率。
-
公开(公告)号:CN116521380A
公开(公告)日:2023-08-01
申请号:CN202310819041.2
申请日:2023-07-05
Applicant: 之江实验室
Abstract: 本说明书公开了一种资源自适应协同的模型训练加速方法、装置及设备。所述方法包括:获取不同计算单元对应的计算精度信息以及计算资源信息,基于的计算精度信息以及计算资源信息,生成各资源调用策略;在获取到目标模型的模型数据后,针对目标模型的每个训练阶段,确定该训练阶段所需的目标计算精度以及目标计算资源;确定满足各训练阶段的计算精度需求和计算资源需求的各资源调用策略,作为各候选调用策略;按照指定评估条件在各候选调用策略中选取出目标调用策略;根据目标调用策略调用各计算单元对应的计算资源,以执行目标模型每个训练阶段的训练任务。
-
公开(公告)号:CN116521094A
公开(公告)日:2023-08-01
申请号:CN202310804460.9
申请日:2023-07-03
Applicant: 之江实验室
IPC: G06F3/06
Abstract: 本申请涉及一种元数据存储方法、装置、计算机设备和存储介质。所述方法包括:根据应用需求设置元数据的存储基准时间;以存储基准时间为起点,根据待存储的元数据的数据类型以及待存储的元数据的存储周期,设置存储空间中的存储时间片;根据接收到的待存储的元数据的时间戳,将待存储的元数据存储至对应的存储时间片中。采用本方法能够解决现有的存储方式存在数据删除不彻底而导致的存储空间的利用率低以及存储空间回收率低的问题。
-
公开(公告)号:CN116204387B
公开(公告)日:2023-07-21
申请号:CN202310461391.6
申请日:2023-04-26
Applicant: 之江实验室
Abstract: 本说明书公开了一种芯片电流的预测方法、装置、介质及电子设备,采用可解释人工智能技术,获取芯片中的任务负载状态以及指令集,该任务负载状态包括运算单元任务负载状态和缓存单元任务负载状态。将该芯片的任务负载状态输入到第一回归模型,以使第一回归模型确定该芯片维持该任务负载状态的所需电流。并将该指令集输入第二回归模型,以使第二回归模型确定该芯片执行该指令集中的指令后的电流变化值。根据该芯片维持该任务负载状态的所需电流以及该芯片执行该指令集中包含的指令后的电流变化值,以确定该芯片的增量电流。实现了对芯片维持作业的电流的预测,且因为第一回归模型与第二回归模型具备可解释性,提高了预测电流作业的可靠性及可控性。
-
公开(公告)号:CN116186330B
公开(公告)日:2023-07-11
申请号:CN202310442154.5
申请日:2023-04-23
Applicant: 之江实验室
IPC: G06F16/783 , G06V10/80
Abstract: 本说明书公开了一种基于多模态学习的视频去重方法及装置,可以获取视频存储请求,而后,可以根据视频存储请求,确定待检测视频,以及确定数据库中的目标视频,进而,将待检测视频、待检测视频的文本相关信息输入到预先训练的识别模型中的第一特征提取网络,提取待检测视频的视觉‑文本多模态特征,将目标视频和目标视频的文本相关信息输入识别模型的第二特征提取网络,提取目标视频的视觉‑文本多模态特征。将待检测视频的视觉‑文本多模态特征以及目标视频的视觉‑文本多模态特征输入到识别模型中的重复检测子网络,得到重复检测结果,并根据该重复检测结果,确定是否将待检测视频存储在数据库中,从而能够提高视频去重的准确性。
-
-
-
-
-
-
-
-
-