-
公开(公告)号:CN118410498B
公开(公告)日:2024-10-01
申请号:CN202410881154.X
申请日:2024-07-03
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/57 , G06N3/042 , G06N3/0455 , G06N3/0464 , G06N3/0499 , G06N3/082 , G06N3/084 , G06N3/0985
Abstract: 本发明公开了一种细粒度混合语义漏洞检测方法及系统,属于网络安全技术领域。包括将序列代码表示输入预训练语言模型进行处理,获取全局语义特征向量和注意力分数嵌入矩阵;将序列代码表示输入预设的多尺度融合卷积神经网络进行处理,获取局部特征向量;将图代码表示输入具有残差结构的图卷积神经网络进行处理,获取图嵌入向量;将全局语义特征向量、局部特征向量和图嵌入向量融合后输入训练好的漏洞检测模型进行处理,获取漏洞检测结果;根据漏洞检测结果和注意力分数嵌入矩阵对序列代码表示进行细粒度检测,获取漏洞定位结果。能够提高模型特征提取能力,提高漏洞检测的准确性;解决现有技术漏洞检测粒度过粗的问题。
-
公开(公告)号:CN117669651A
公开(公告)日:2024-03-08
申请号:CN202410133906.4
申请日:2024-01-31
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06N3/0442 , G06N3/0475 , G06N3/088 , G06N3/09 , G06N3/094
Abstract: 本发明涉及基于ARMA模型的对抗样本黑盒攻击防御方法及系统,属于对抗样本攻击防御技术领域,数据预处理,训练异常检测模型,独立训练代理模型;对测试集进行对抗样本攻击,包括:对离散类型特征添加扰动;评估对抗样本的可迁移性;误差优化混合再训练的防御;使用训练误差对对抗样本误差进行优化;评估对抗样本防御方法的性能;利用USAD优化模型对工业控制系统的行为数据进行异常检测,输出检测结果。本发明有效解决了对抗样本不符合特征约束、对抗样本符合特征约束但忽略了不同特征之间的复杂依赖性、不易在现实环境中执行的白盒攻击、部分防御方法无法使模型有效对对抗样本进行准确分类和单独使用误差优化方法无法提高模型性能的问题。
-
公开(公告)号:CN117131452A
公开(公告)日:2023-11-28
申请号:CN202311096544.8
申请日:2023-08-29
Applicant: 国网山东省电力公司信息通信公司 , 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/2433 , G06F18/20 , G06N7/01 , G06N3/0455 , G06N3/042 , G06N3/044 , G06N3/0464 , G06N3/084
Abstract: 本发明提出了基于归一化流和贝叶斯网络的异常检测方法及系统,涉及异常检测技术领域,获取电力控制系统中多个电力设备的当前状态信息,组成待检测的多变量样本;利用基于归一化流和贝叶斯网络构建的异常检测模型,对多变量样本进行密度估计;基于估计的密度值,进行异常识别,得到是否发生异常的检测结果;异常检测模型,基于贝叶斯网络,根据多变量时间序列中序列间的条件依赖关系,得出初始的条件概率;采用基于图的依赖编码器生成序列的依赖性表示;基于序列的依赖性表示和初始的条件概率,通过归一化流,得到多变量时间序列的密度函数,计算样本的密度估计值;本发明同时保证异常检测模型高准确率和低误报率,提高异常检测模型的鲁棒性。
-
公开(公告)号:CN117081858A
公开(公告)日:2023-11-17
申请号:CN202311329174.8
申请日:2023-10-16
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明涉及一种基于多决策树入侵行为检测方法、系统、设备及介质,属于基于网络流量的入侵检测研究技术领域,包括:获取网络流量数据,进行特征提取,获得网络流量数据集;将网络流量数据集划分为训练集和测试集;针对网络流量数据集中存在的攻击类型种类,构建相应的入侵检测集成模型。对入侵检测集成模型进行训练,得到训练后的入侵检测集成模型;使用测试集输入训练后的入侵检测集成模型判断是否发生异常;本发明对位于入侵检测集成模型的第一层的多棵决策树作为基分类器,使用特殊处理的训练集分别进行单独训练,提高了每个基分类器对真实网络环境中存在的多种攻击流量的敏感性,进而提升整个入侵检测集成模型对攻击的敏感性。
-
公开(公告)号:CN117034273A
公开(公告)日:2023-11-10
申请号:CN202311090888.8
申请日:2023-08-28
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06N3/0464 , G06N3/08
Abstract: 本发明提出了基于图卷积网络的安卓恶意软件检测方法及系统,从Classes.dex文件中提取API调用图、操作码和敏感权限,基于API调用图与敏感权限特征的映射关系,得到敏感权限API,以所述敏感权限API作为所述API调用图的中心节点,生成简化后的API调用图;将简化后的API调用图基于节点的调用关系,生成邻接矩阵;将简化后的API调用图与操作码、第三方库的API、敏感权限相结合,得到行为特征矩阵;将邻接矩阵与行为特征矩阵输入到基于GCN改进的检测模型中,得到检测结果。充分利用了API的语义信息,在减少了复杂度的同时提高了检测精度。
-
公开(公告)号:CN116996392A
公开(公告)日:2023-11-03
申请号:CN202311254711.7
申请日:2023-09-27
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04L41/12 , H04L41/142 , H04L41/0677 , H04L43/0876 , H04L43/50
Abstract: 本发明公开了一种基于加权有向图算法的流量路径重构方法及系统,涉及计算机网络技术领域。该方法包括步骤:采集待发送的流量数据,并对流量数据进行格式转化;根据流量数据的报文头格式,对流量数据进行提取;根据每一条报文的采样数据据创建子路径,并对子路径进行去重和排序;确定目标流路径,将其余子路径并行生成并进行对比,生成旁路路径;创建单向加权有向图,对目标流路径和旁路路径分别赋值;根据每条路径的路径终点进行权值更新,根据更新后的路径权值重新构造加权有向图;将重新构造的加权有向图中权重最大的路径作为重构路径。本发明能够实现更精确、全面的流量路径重构,以助于网络监控、故障定位和性能优化。
-
公开(公告)号:CN116991137A
公开(公告)日:2023-11-03
申请号:CN202310809566.8
申请日:2023-07-04
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G05B23/02
Abstract: 本发明涉及一种面向概念漂移的可适应可解释的工控系统异常检测方法,包括:步骤1:获取不同时期的工控数据样本,包括历史数据和新数据,训练异常检测模型,保存训练参数;步骤2:校准异常检测模型的输出结果;步骤3:漂移检测;步骤4:漂移解释;步骤5:将发生概念漂移的新样本和旧样本中没有过时的样本组合起来,重新训练异常检测模型,适应漂移;步骤6:将归一化处理后的待检测工控数据输入步骤5处理后的适应漂移的异常检测模型,输出异常检测结果。本发明判断是否发生了概念漂移。本发明适应概念漂移的过程中防止模型忘记旧分布中没有过时的样本,同时又能学习到新分布中发生概念漂移的正常样本的问题,适应漂移降低模型的误报率。
-
公开(公告)号:CN116633705B
公开(公告)日:2023-10-13
申请号:CN202310919286.2
申请日:2023-07-26
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明公开的基于复合自动编码器的工业控制系统异常检测方法及系统,属于工业控制系统异常检测技术领域,包括:获取工业控制系统的多维时序数据;对多维时序数据进行时序划分,获得多段子序列数据;根据复合自动编码器和多段子序列数据,获得重构数据和预测数据;根据重构数据、子序列数据和预测数据,计算获得重构误差和预测误差;根据重构误差和预测误差,识别出现异常流量时间;根据每个时间每个维度的总误差,计算每个维度在出现异常流量时间前后的总误差变化率;判定总误差变化率大于变化率阈值的维度对应的流量数据为异常。实现了对工业控制系统中异常流量的准确识别。
-
公开(公告)号:CN115953303A
公开(公告)日:2023-04-11
申请号:CN202310238326.7
申请日:2023-03-14
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06T3/40 , G06V10/77 , G06V10/774 , G06V10/80
Abstract: 本发明属于图像处理相关技术领域,本发明提出了结合通道注意力的多尺度图像压缩感知重构方法及系统,包括:将原始图像转换为灰度图像,对灰度图像进行多尺度分块采样得到采样值,对所述采样值通过第一通道注意力模块计算输出特征的多通道融合矩阵,将所述多通道融合矩阵与采样值运算处理得到初始重建图像;将初始重建图像经过特征提取后依次经过第二通道注意力模块、多尺寸残差模型进行特征的多尺度融合,得到深度重建图像;将所述初始重建图像和深度重建图像进行结合,得到重构图像。通过图像初始重建和深度重建,在提取深度特征的同时也考虑了浅层特征对重构的影响,使得重构效果好。
-
公开(公告)号:CN111478807A
公开(公告)日:2020-07-31
申请号:CN202010255124.X
申请日:2020-04-02
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明的有向多层网络最小反馈节点集的构造方法,包括:a).集合、能量和参数的初始化;b).节点i的插入及放回;c).反复执行步骤b),直至集合S成功更新设定次数,将每次更新后得到的最小能量值记为Emin;d).反复执行步骤b)、c),如果Emin值连续预先设定的次数内没有更新,此时即构造出了多层网络的最小反馈节点集。本发明的最小反馈节点集的构造方法,通过模拟退火算法可快速构造规模尽可能大的集合S,从而最终构造出规模尽可能小的反馈节点集,进而利用构造出的最小反馈节点集作为控制节点对多层网络进行控制,本发明为有向多层网络最小反馈节点集的构造提出了一种行之有效的方法。
-
-
-
-
-
-
-
-
-