-
公开(公告)号:CN112706476A
公开(公告)日:2021-04-27
申请号:CN202011590832.5
申请日:2020-12-29
Applicant: 吉林大学
Abstract: 本发明一种以锂皂石修饰的玄武岩纤维阻燃保温材料及其制备方法,包括锂皂石(Laponite)无机浸润剂、玄武岩纤维阻燃组分、树脂胶防水粘结组分、秸秆保温组分。该新型阻燃保温材料通过锂皂石修饰玄武岩纤维有效提高了普通玄武岩纤维的阻燃性能,同时使纤维表面更加粗糙化,提高施工相容性,可直接代替传统施工过程中的纤维网格布与后续砂浆层粘结;该发明又结合秸秆优良的保温隔热性能和来源丰富、造价低廉且可再生的资源优势,再配合环氧树脂的防水密封性能和增稠粘结性能,制备了一种阻燃性能更好、保温性能优良、施工相容性更好、造价更低的新型建筑材料。
-
公开(公告)号:CN110465300B
公开(公告)日:2020-09-25
申请号:CN201910784103.4
申请日:2019-08-23
Applicant: 吉林大学
IPC: B01J23/78 , B01J35/10 , C02F1/72 , C02F101/38 , C02F101/36
Abstract: 本发明属于固体废弃物资源化利用技术领域,尤其涉及一种非均相芬顿催化剂及其制备方法和应用。本发明将煤气化渣进行酸处理,得到第一物料;将所述第一物料与亚铁盐溶液混合,进行复合,得到第二物料;将所述第二物料进行煅烧,得到非均相芬顿催化剂。本发明以煤制气过程中产生的固体废弃物煤气化渣为载体,充分利用煤气化渣化学性质稳定、比表面积大的特点,经过酸处理、载铁、煅烧等工艺制备非均相芬顿催化剂,相比较现有催化剂载体具有价格低廉、资源丰富的优点。实施例的结果表明,本发明制备的非均相芬顿催化剂对亚甲基蓝的降解率可达99.8%,说明该催化剂的催化活性高、反应速率快。
-
公开(公告)号:CN109295347B
公开(公告)日:2020-07-10
申请号:CN201810551360.9
申请日:2018-05-31
Applicant: 吉林大学
Abstract: 本发明公开了一种可用于在线供氢的铝合金材料,其为向可水解制氢的Al‑Ga‑In‑Sn合金中引入Al2O3粉体以得到Al‑Ga‑In‑Sn‑Al2O3合金,其中,所述Al2O3的含量不大于8wt%,并采用熔融浇注的方法制备。研究表明,Al2O3掺杂的铝合金具有良好的产氢性能,合金与水接触能立即产生氢气,反应没有迟滞时间。Al‑Ga‑In‑Sn‑Al2O3合金具有稳定的产氢速率,可用于在线水解供氢,为质子交换膜燃料电池提供稳定的氢源。
-
公开(公告)号:CN107855105B
公开(公告)日:2020-02-18
申请号:CN201710157813.5
申请日:2017-03-16
Applicant: 吉林大学
Abstract: 本发明公开了一种煤气化细渣酸溶制备多孔微珠的方法,所述方法包括:a.取适量煤气化细渣,加水配制固含在10‑30wt%的煤气化细渣浆料;b.对步骤a配置的浆料进行充分搅拌,之后通过重力旋流分离,收集重质分离产物得到富硅复合料浆;c.将适量酸溶液与所述富硅复合浆料混合得到混合浆料,进行酸溶反应;d.对酸溶反应之后的物料进行固液分离,并洗涤、干燥,得到产物;本发明还公开了制备得到的复合多孔材料。本发明利用煤气化细渣中硅铝钙铁质的高活性,在温和条件下调控溶出获得多孔材料,该材料具有良好的物理、化学吸附性能,制备工艺简单,成本低廉,溶出的金属离子可以进一步制备净水剂,实现了煤气化渣的全组分综合利用,变废为宝。
-
公开(公告)号:CN110551921A
公开(公告)日:2019-12-10
申请号:CN201810552176.6
申请日:2018-05-31
Applicant: 吉林大学
Abstract: 本发明公开了一种制氢用的Al-Ga-In-Sn-Bi合金,向可水解制氢的Al-Ga-In-Sn合金中引入金属铋以得到Al-Ga-In-Sn-Bi合金,其中,所述铟、锡和铋的含量为6wt%~10wt%;并且铟、锡和铋的质量分数按照In3Sn的摩尔量为m,InSn4的摩尔量为n,InBi的摩尔量为k,所需的铟、锡和铋的原子比进行添加,即:铟、锡与铋的原子比为(3m+n+k):(m+4n):k,其中m和n大于等于0但不同时为0,k大于0;本发明还公开了上述合金在燃料电池中的应用。本发明利用Bi的掺杂降低了贵金属Ga、In的用量以降低成本;另外,本发明中Bi的引入可以形成Ga、In、Sn、Bi元素共存的间歇相粒子,其能够在保证合金产氢效率的前提下有效地控制其与水反应速率,使得反应更为平稳温和、更持久,以满足在线氢燃料电池的需求。
-
公开(公告)号:CN110550599A
公开(公告)日:2019-12-10
申请号:CN201810552155.4
申请日:2018-05-31
Applicant: 吉林大学
Abstract: 本发明公开了一种水解制氢系统,所述水解制氢系统包括反应容器、输水装置、进水管、出水管和第一过滤装置;其中,所述反应容器上设有氢气出口、内部设有置物架,用于搁置待进行水解制氢的反应物块并使所述反应物块与所述反应容器的底部之间留有距离;所述进水管的第一端位于所述反应容器内、第二端连接至所述输水装置的进水口,所述第一过滤装置设置于所述进水管的第一端;所述出水管的第一端连接至所述输水装置的出水口、第二端位于所述反应容器内置物架的上方。本发明所提供的制氢装置具有结构简单,制氢速率可控,供氢速率平稳,响应时间短,无污染,安全可控等优点,适合为氢燃料电池以及其它需氢装置提供氢源。
-
公开(公告)号:CN110465300A
公开(公告)日:2019-11-19
申请号:CN201910784103.4
申请日:2019-08-23
Applicant: 吉林大学
IPC: B01J23/78 , B01J35/10 , C02F1/72 , C02F101/38 , C02F101/36
Abstract: 本发明属于固体废弃物资源化利用技术领域,尤其涉及一种非均相芬顿催化剂及其制备方法和应用。本发明将煤气化渣进行酸处理,得到第一物料;将所述第一物料与亚铁盐溶液混合,进行复合,得到第二物料;将所述第二物料进行煅烧,得到非均相芬顿催化剂。本发明以煤制气过程中产生的固体废弃物煤气化渣为载体,充分利用煤气化渣化学性质稳定、比表面积大的特点,经过酸处理、载铁、煅烧等工艺制备非均相芬顿催化剂,相比较现有催化剂载体具有价格低廉、资源丰富的优点。实施例的结果表明,本发明制备的非均相芬顿催化剂对亚甲基蓝的降解率可达99.8%,说明该催化剂的催化活性高、反应速率快。
-
公开(公告)号:CN106518149B
公开(公告)日:2019-04-23
申请号:CN201611049012.9
申请日:2016-11-24
Applicant: 吉林大学
IPC: C04B38/06 , C04B33/132 , C04B33/138 , C04B33/34
Abstract: 本发明涉及一种利用油页岩半焦和铁尾矿制备透水砖的方法,所述透水砖由油页岩半焦30‑40wt%、铁尾矿30‑50wt%、羧甲基纤维素钠2‑5wt%、工业碳酸钠2‑4wt%、水15‑20wt%组成。油页岩半焦主要由无机氧化物和残余有机质组成,矿物物相由长石和石英组成,有机质含量大于总质量的5%;铁尾矿粒度由10目‑40目组成。制备时先将油页岩半焦磨细和铁尾矿筛分,外加少量工业碳酸钠造孔剂和羧甲基纤维素钠粘结剂,经半干法压力成型制得生坯,然后按一定的升温工艺进行升温烧成。本发明利用工业固体废弃物油页岩半焦中的长石物相降低透水砖烧成温度,节约成本;利用油页岩半焦中存在的残余有机质作为部分造孔剂,提高了透水砖的透水性能;发明产品可广泛应用于人行道、广场等场所。
-
公开(公告)号:CN109179455A
公开(公告)日:2019-01-11
申请号:CN201811147143.X
申请日:2018-09-29
Applicant: 吉林大学
Abstract: 本发明公开了一种碳酸盐型盐湖卤水富集锂盐同时提取钾盐的方法,首先在常压下对碳酸盐型盐湖卤水进行等温蒸发浓缩,直至出现碳酸锂;然后采用高压CO2对盐湖卤水进行碳化处理,碳酸锂转化为碳酸氢锂溶于样液,并析出部分KHCO3,对该体系进行固液分离,剩余溶液重复上述操作,直至不再析出KHCO3固体;剩余液相放入恒温箱中等温蒸发浓缩,KHCO3持续析出,Li+以LiHCO3形式存在于溶液中,从而使得Li+浓度从原始的0.3-0.7g/L富集至30g/L以上。本发明方法工艺条件易于操控,实验剂量容易放大,成本低廉;且与现有的锂的富集方法相比,具有快速高效且可连续生产的优点,并获得钾单盐产品。
-
公开(公告)号:CN108815548A
公开(公告)日:2018-11-16
申请号:CN201810730364.3
申请日:2018-07-05
Applicant: 吉林大学
Abstract: 本发明公开了一种粉煤灰多孔微珠除味剂的制备方法。所述方法为:已预处理的粉煤灰细灰作为原料,首先配制不同比例的浓硫酸与金属氧化物的混合料浆;然后将其置于马弗炉内焙烧,即可得到焙烧熟料;再经过水浸溶出过程可将粉煤灰中的可溶盐溶出,水洗、干燥后得到粉煤灰多孔微珠;最后用有机改性剂对所得的粉煤灰微珠进行改性,使二者进行充分混合,室温下陈化一定时间即可得到粉煤灰多孔微珠除味剂。本发明的工艺过程简单、生产成本低,同时所制备的微珠材料的孔结构可以调控,通过对其进行改性处理能够有效的吸收有害气体,充分实现了固体废弃物的高效利用。
-
-
-
-
-
-
-
-
-