-
公开(公告)号:CN110778472B
公开(公告)日:2020-10-16
申请号:CN201911060016.0
申请日:2019-11-01
Applicant: 哈尔滨工业大学
IPC: F03H1/00
Abstract: 本发明提出一种霍尔推力器压紧装配结构,该压紧装配结构的阳极螺柱依次从陶瓷通道、底板和绝缘子安装孔中穿过,压紧螺母与阳极螺柱配合压紧在绝缘子下表面上,阳极与压紧螺母配合将陶瓷通道和绝缘子与底板压紧;压紧螺母的压紧段和装配螺纹段的端面均为同心圆环端面,装配螺纹段与阳极下方的螺柱螺纹配合,装配螺纹段的内径与阳极的螺柱外径相等,压紧段外径与绝缘子的底面外径相等。解决了现有霍尔推力器装配时绝缘子承受剪切力过大易碎,进而影响其整体结构可靠性以及工作可靠性的问题,提出一种霍尔推力器压紧装配结构,采用压紧螺母能够将阳极、陶瓷通道、底板以及绝缘子等固定压紧,能大幅度降低绝缘子所受剪切力作用,提高推力器可靠性。
-
公开(公告)号:CN111516907A
公开(公告)日:2020-08-11
申请号:CN202010342613.9
申请日:2020-04-27
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种微阴极电弧推力阵列系统,涉及卫星微推进技术领域,包括一个由多组微阴极电弧推力器按照偶数正多边形放置方式排布集成的推力器集成部、一个功率输出单元和一个控制部;功率输出单元的输出端通过控制部与推力器集成部的阳极连接,推力器集成部的阴极与功率输出单元的输入端连接;其中,多组微阴极电弧推力器的阴极共用;通过控制部控制推力器集成部不同阳极与阴极间的通断,以达到多组微阴极电弧推力器轮流放电的目的;通过改变控制部的放电模式,以使微阴极电弧推力器在多种工作模式中选择,达到满足不同推进需求的目的。本发明具有质量和体积均减小、推重比和可靠性均上升、更好满足卫星推进需求等功能。
-
-
公开(公告)号:CN109779863B
公开(公告)日:2020-06-23
申请号:CN201910098845.1
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: F03H1/00
Abstract: 一种霍尔推力器安装支架,属于霍尔推力器技术领域。本发明型解决了现有的霍尔推力器在空间受限的情况下供气管路和电路裸露在外面的问题。它包括支架主体和底板,所述支架主体包括水平设置的定位板及两个竖直设置在底板上方的支撑件,所述定位板的中部竖直开设有内径为上小下大的阶梯通孔,两个支撑件相对设置且其下部均固设在阶梯通孔的小孔内壁,每个支撑件均与阶梯通孔的小孔内壁随形设置,其中一个支撑件上开设有若干开口向上的豁口,另一个支撑件上水平开设有导线孔,每个支撑件的端部与另一个支撑件的端部之间均存在间隙,底板水平设置在阶梯通孔的大孔中且与定位板固接。
-
公开(公告)号:CN111219304A
公开(公告)日:2020-06-02
申请号:CN201910204522.6
申请日:2019-03-18
Applicant: 哈尔滨工业大学
IPC: F03H1/00
Abstract: 一种大高径比霍尔推力器的磁屏结构,属于霍尔推力器技术领域。本发明解决现有采用大高径比设计霍尔推力器通道中径处的轴向磁场梯度低,推力器性能低的问题。本发明包括内磁屏、外磁屏和支撑件,内磁屏、外磁屏的圆心与支撑件的圆心重合,并且内磁屏、外磁屏和支撑件之间通过勾脚和扣槽的相互扣合固定构成内外嵌套的圆筒形结构。本发明在霍尔推力器采用大高径比设计的过程中,将内磁屏和外磁屏不用同一底面连接,不仅具有采用大高径比设计霍尔推力器的提高推力器推重比、减弱壁面侵蚀等优点,使得航天飞行器的有效载荷、使用寿命和机动灵活性有所提高,同时也提高了采用大高径比设计霍尔推力器通道中径处的轴向磁场梯度,提高了推力器的工作性能。
-
公开(公告)号:CN109630369B
公开(公告)日:2020-01-14
申请号:CN201910026143.2
申请日:2019-01-11
Applicant: 哈尔滨工业大学
IPC: F03H1/00
Abstract: 本发明提供一种射频离子推力器及脉冲产生方法,涉及离子推力器技术领域。射频离子推力器包括电离室、二极管、脉冲电压电路和低压放电电源;在射频离子推力器屏栅和加速栅之间引入脉冲工作的电压,利用脉冲电压引出离子,进而产生推力,通过调整占空比在不改变现有射频离子推力器结构的情况下,实现更小的平均输出推力。本发明的射频离子推力器及脉冲产生方法可以有效扩展现有射频离子体推力器的推力输出下边界,在不改变现有射频离子推力器结构和尺寸的情况下,实现更小的平均输出推力,同时避免实现微小推力输出时需要高压加速电源增大推力器尺寸的问题。
-
公开(公告)号:CN109555658A
公开(公告)日:2019-04-02
申请号:CN201910098260.X
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: F03H1/00
Abstract: 一种具有多孔材料隔板的霍尔推力器气体分配器结构,属于霍尔推力器技术领域。本发明解决了现有的霍尔推力器在保证气体均化程度的情况下,离子束回流易在隔板处形成沉积,从而降低阳极寿命的问题。顶部壳层下内环上靠近顶部壳层外环的一侧壁上固设有第一挡板,且所述第一挡板与顶部壳层外环的内壁之间存在间隙,顶部壳层外环上靠近顶部壳层上内环的一侧壁上固设有第二挡板,所述第二挡板位于第一挡板的上方,且第二挡板与顶部壳层上内环以及第二挡板与第一挡板之间均存在间隙,一级隔板及二级隔板均为多孔材料隔板,其中一级隔板与环形凹槽的底部、一级隔板与二级隔板之间以及二级隔板与第一挡板之间均存在间隙。
-
-
公开(公告)号:CN105840444B
公开(公告)日:2018-07-03
申请号:CN201610213278.6
申请日:2016-04-07
Applicant: 哈尔滨工业大学
IPC: F03H1/00
Abstract: 用于霍尔推力器供气管路的电气绝缘结构,涉及电推进器电气绝缘领域。本发明是为了解决现有的霍尔推力器气路绝缘子外侧由于真空绝缘沿面闪络机制引起的绝缘失效和绝缘子内侧由于低气压击穿机制引起的绝缘失效问题。本发明陶瓷绝缘子的横截面呈“山”型结构,且陶瓷绝缘子的外表面为圆柱结构,陶瓷绝缘子的中间端为凸槽结构,该结构在有限空间内大幅度增加爬电通道长度,降低了空间等离子体在电极电场作用下对爬电通道的撞击程度,同时,气体分配器管路被包裹在陶瓷绝缘子内,减少了带电粒子对高电位与高电场强度处的绝缘子沿面的轰击,进而提高了抗真空沿面闪络特性的绝缘强度。
-
公开(公告)号:CN104612923B
公开(公告)日:2017-06-13
申请号:CN201410728380.0
申请日:2014-12-03
Applicant: 哈尔滨工业大学
IPC: F03H1/00
Abstract: 一种霍尔推力器启动瞬态过程中的电源电流峰值的预测方法,涉及航空航天的等离子推进领域。本方法在霍尔推力器不点火的前提下,利用电离规或压力测量装置测量不同质量流量下通道内的压力值。结合压力值与霍尔推力器的点火电路中的各个参数之间的关系,从而推导得到电源电流峰值,从而确定了点火启动瞬态过程中电源电流峰值的大小,实现了对霍尔推力器在启动瞬态过程中的电源电流峰值的预测。本发明适用于霍尔推力器的电流峰值的预测。
-
-
-
-
-
-
-
-
-