一种基于身体结构划分的双线性行人再识别网络构建方法

    公开(公告)号:CN109614853B

    公开(公告)日:2023-05-05

    申请号:CN201811273872.X

    申请日:2018-10-30

    Abstract: 本发明涉及一种基于身体结构划分的双线性行人再识别网络构建方法,包括以下步骤:对原始行人图像进行身体结构分块得到多个结构子框,将多个子框组合成新的行人图像,构造结构框预测子网络;设置加权的局部损失函数来训练该结构框预测子网络;构造两个子网络,分别以原始行人图像和重组后行人图像作为输入,对应地提取全局行人特征和局部行人特征;设置双线性融合层,并将其作为全局特征和局部特征的融合层,得到最终的行人特征表示;对整体网络进行训练,得到基于身体结构划分的双线性行人再识别模型。本发明结合整体特征和局部特征,充分利用了身体结构信息,通过双线性融合方法获得更具判别力的行人特征,使得系统整体匹配准确率大大提升。

    基于双一致性约束的行人再识别技术

    公开(公告)号:CN113065434A

    公开(公告)日:2021-07-02

    申请号:CN202110312827.6

    申请日:2021-03-24

    Abstract: 本发明设计了一种基于双一致性约束的行人再识别技术,属于计算机视觉图像技术领域。针对目前行人再识别模型过拟合至训练相机,难以泛化到新相机的问题,本发明提出了分布一致性约束以及知识一致性约束,引导模型提取相机无关特征。分布一致性约束要求不同相机的输出特征服从一致分布,由相机分布对齐损失函数实施。知识一致性目的是要求模型在不同相机中学习到的参数更新相似,由知识一致正则化向实施。实验结果表明我们的策略能够提升模型过滤相机信息,提取相机无关特征的能力,有效地增强模型对新相机的泛化能力。

    基于全局特征损失函数的行人再识别方法

    公开(公告)号:CN108960142B

    公开(公告)日:2021-04-27

    申请号:CN201810721744.0

    申请日:2018-07-04

    Abstract: 本发明涉及一种基于全局特征损失函数的行人再识别方法,将全部输入图像分成所有可能图像对,包括表示同一人的同类对和表示不同人的异类对;计算所有可能图像对之间的特征距离,从两类图像对之间的特征距离中分别统计形成全局的距离均值和方差;构建全局特征损失函数并使用该全局特征损失函数在学习过程中减小两个方差以及增大两个均值之间的差;将全局特征损失函数与分类损失函数和验证损失函数联合使用,共同增强特征的学习。本发明设计合理,充分利用了输入全体图像中相比于单张图像更为丰富的信息,使得特征的描述能力性能远远高于单纯的单张图片特征,使得系统整体匹配率大大提高。

    基于双路编解码器的低照度图像亮度增强及超分辨率方法

    公开(公告)号:CN112614061A

    公开(公告)日:2021-04-06

    申请号:CN202011443876.5

    申请日:2020-12-08

    Abstract: 本发明涉及一种基于双路编解码器的低照度图像亮度增强及超分辨率方法,属于计算机视觉图像技术领域。第一步,通过共享参数的编码器对暗光图像进行特征提取,得到一组特征图;第二步,将特征图送入超分辨率解码器进行解码,得到超分辨率特征图;第三步,对第一步中编码器输出的特征图和第二步的超分辨率特征图分别进行池化得到两个特征向量,并使用注意力机制对其加权融合,然后送入低照度解码器进行解码。最后,对两个解码器的输出进行后处理,得到超分辨率后的对应图像。本发明设计合理,针对目前低照度增强方法的缺陷,将低照度增强和图像超分辨率任务相结合,提高了重建图像的视觉效果,整体在低照度增强和超分综合任务上取得了较好的效果。

    基于全卷积网络的多特征融合的目标检测方法

    公开(公告)号:CN107563381B

    公开(公告)日:2020-10-23

    申请号:CN201710816619.3

    申请日:2017-09-12

    Abstract: 本发明设计了一种基于全卷积网络的多特征融合的目标检测方法,其主要技术特点是:搭建具有六个卷积层组的全卷积神经网络;利用卷积神经网络的前五组卷积层提取图像特征,并将其输出进行融合,形成融合特征图;对融合后的特征图进行卷积处理,直接产生固定数目的不同大小的目标边框;计算卷积神经网络生成的目标边框与真实边框之间的分类误差与定位误差,利用随机梯度下降法降低训练误差,得到最终训练模型的参数,最后进行测试得到目标检测结果。本发明利用了深度卷积网络对目标的强大的表示能力,构建了用于目标检测的全卷积神经网络,提出了新的融合特征方法,提高了算法的检测速度和精度,获得了良好的目标检测结果。

    基于生成式对抗网络模型的数据增强行人再识别方法

    公开(公告)号:CN110188835A

    公开(公告)日:2019-08-30

    申请号:CN201910483958.3

    申请日:2019-06-05

    Abstract: 本发明涉及一种基于生成式对抗网络模型的数据增强行人再识别方法,包括使用Mask-RCNN图像分割算法分割出图像中行人的掩膜图像;结合掩膜图像和手工标注行人属性,训练一个端到端的改进星形生成式对抗网络,从一个摄像头下的真实行人图像生成任何数量摄像头下的假训练图像;使用训练好的改进星形生成式对抗网络生成所有真实图像对应的所有相机域的假训练图像;将真实图像和假训练图像一起送入行人再识别模型,计算行人图像间距离并完成行人再识别功能。本发明设计合理,利用生成式对抗网络生成更多的训练样本,同时生成的图像背景能够有效地表示相对应摄像头下的真实场景,有效提高行人再识别模型的鲁棒性和判决能力,有效提高了行人再识别的准确率。

    基于超特征融合与多尺度金字塔网络的目标检测方法

    公开(公告)号:CN109034210A

    公开(公告)日:2018-12-18

    申请号:CN201810721716.9

    申请日:2018-07-04

    Abstract: 本发明涉及一种基于超特征融合与多尺度金字塔网络的目标检测方法,包括利用深度卷积神经网络提取具有不同特征信息的分层多尺度特征图;进行超特征融合;构建新的多尺度金字塔网络;根据不同层分别构建不同大小和长宽比的目标候选框;构建一个新的用于多特征提取且能够防止梯度消失的卷积模块;利用多任务损失函数对多类别分类器和边界框回归器进行联合训练优化实现图像分类和目标定位功能。本发明利用深度卷积网络对目标的特征提取能力,考虑超特征融合方法改善特征表达能力,生成了一个新的模块防止梯度消失而且能更有效地帮助训练和提取特征,构建了用于目标检测的全卷积神经网络,提高了算法的检测精度,获得了良好的目标检测结果。

    基于全局特征损失函数的行人再识别方法

    公开(公告)号:CN108960142A

    公开(公告)日:2018-12-07

    申请号:CN201810721744.0

    申请日:2018-07-04

    CPC classification number: G06K9/00369 G06K9/00778 G06K9/66

    Abstract: 本发明涉及一种基于全局特征损失函数的行人再识别方法,将全部输入图像分成所有可能图像对,包括表示同一人的同类对和表示不同人的异类对;计算所有可能图像对之间的特征距离,从两类图像对之间的特征距离中分别统计形成全局的距离均值和方差;构建全局特征损失函数并使用该全局特征损失函数在学习过程中减小两个方差以及增大两个均值之间的差;将全局特征损失函数与分类损失函数和验证损失函数联合使用,共同增强特征的学习。本发明设计合理,充分利用了输入全体图像中相比于单张图像更为丰富的信息,使得特征的描述能力性能远远高于单纯的单张图片特征,使得系统整体匹配率大大提高。

    基于多路径密集特征融合全卷积网络的目标检测方法

    公开(公告)号:CN108846446A

    公开(公告)日:2018-11-20

    申请号:CN201810721733.2

    申请日:2018-07-04

    Abstract: 本发明涉及一种基于多路径密集特征融合全卷积网络的目标检测方法,利用深度卷积神经网络提取具有不同特征信息的分层多尺度特征图;利用自底向上的旁路连接进行自下而上的特征融合;利用自顶向下的密集旁路连接进行自上而下的密集特征融合;构建不同大小和长宽比的目标候选框;利用二分类器减少目标候选框中的简单背景样本,并利用多任务损失函数对二分类器、多类别分类器和边界框回归器进行联合优化。本发明基于深度卷积神经网络提取图像特征,利用多路径密集特征融合方法改善特征表达能力,构建了用于目标检测的全卷积网络,提出了减少冗余简单背景样本和多任务损失联合优化的策略,提高了算法的检测精度,获得了良好的目标检测结果。

    利用训练样本及折中度量的3D卷积神经网络构建方法

    公开(公告)号:CN107729993A

    公开(公告)日:2018-02-23

    申请号:CN201711033085.3

    申请日:2017-10-30

    CPC classification number: G06N3/0454

    Abstract: 本发明涉及一种利用训练样本及折中度量的3D卷积神经网络构建方法,其技术特点是:构造孪生结构的3D卷积神经网络;设置网络的损失函数,该损失函数由正样本损失、负样本损失及正则化损失构成,并在正则化损失中结合了马氏距离和欧氏距离;使用softmax损失函数,使用视频序列形式的数据集对网络进行预训练;构造正样本对和负样本对,对图像进行预处理和分割;有选择地利用训练样本对网络进行训练。本发明设计合理,其有选择地使用训练样本来提高训练效率并抑制过拟合,同时,在对特征进行度量时对欧氏距离和马氏距离进行权衡,从而构建3D卷积神经网络模型,试验表明本发明构建的模型及训练策略使得系统整体匹配率大大提升。

Patent Agency Ranking