-
公开(公告)号:CN115019347B
公开(公告)日:2024-12-13
申请号:CN202210725215.4
申请日:2022-06-24
Applicant: 北京交通大学
IPC: G06V40/10 , G06V10/25 , G06N3/08 , G06N3/0464 , G06V10/82 , G06V10/764
Abstract: 本发明提供一种基于跨类别矩阵满秩约束的行人搜索方法及系统,属于计算机视觉技术领域,利用预先训练好的行人搜索模型对获取的待处理的图像数据进行处理,识别图像中的行人;其中,预先训练好的行人搜索模型的训练使用ResNet50网络为基础网络,根据子任务对ResNet50网络进行拆分,构造了一个分离‑基准网络模型,引入可变形卷积来定位整个行人区域,结合秩感知优化损失,对跨类别概率矩阵进行满秩约束,增强类间特征的判别性和多样性。本发明考虑联合多任务协同训练的特征共享网络权重的问题,提出一个基于跨类别概率矩阵秩约束的特征多样性行人搜索框架,然后引入可变形卷积来定位整个行人区域,最后提出了秩感知优化损失,增强类间特征的判别性和多样性。
-
公开(公告)号:CN119048856A
公开(公告)日:2024-11-29
申请号:CN202410887796.0
申请日:2024-07-03
Applicant: 北京交通大学 , 中移雄安信息通信科技有限公司 , 中移系统集成有限公司 , 中移信息系统集成有限公司
IPC: G06V10/774
Abstract: 本申请实施例提供了一种图像标注方法、装置、设备及存储介质。图像标注方法包括:获取视频数据,根据视频数据确定初始数据集及候选数据集;根据初始数据集确定第一标注数据集,并通过标注模型对候选数据集进行标注处理,确定第二标注数据集;其中,标注模型是基于第一标注数据集训练得到的;对第二标注数据集进行筛选,得到第三标注数据集;根据第一标注数据集及第三标注数据集确定视频数据对应的图像标注结果。本申请实施例通过对标注模型标注的图像进行筛选,提高了图像标注的效率及准确性。
-
公开(公告)号:CN118968495A
公开(公告)日:2024-11-15
申请号:CN202410966710.3
申请日:2024-07-18
Applicant: 北京交通大学
IPC: G06V20/64 , G06V10/26 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提供了一种面向动态环境的三维场景生成方法。该方法包括:将动态环境的场景数据转换成视频图像序列;将视频图像序列中的原始视频图像输入至YOLOv8模型,利用YOLOv8模型对图像中动态目标进行检测和操作,得到目标掩码;将原始视频图像和分割得到的目标掩码输入到稳定扩散模型中得到修复后的图像;使用RAFT算法计算深度图中连续帧之间的光流,生成光流信息;使用DPT模型对光流和深度信息进行几何引导生成深度图,根据深度图生成三维场景。本发明能快速识别并移除动态目标,使用文本指导修复技术恢复背景,确保图像的视觉连贯性和自然度。
-
公开(公告)号:CN112800876B
公开(公告)日:2023-11-10
申请号:CN202110050152.2
申请日:2021-01-14
Applicant: 北京交通大学
IPC: G06V40/10 , G06V10/25 , G06V10/82 , G06N3/0464 , G06N3/048
Abstract: 本发明实施例提供了一种用于重识别的超球面特征嵌入方法,包括以下步骤:图像预处理阶段:从数据集中读取目标样本图像,对图像进行预处理;特征提取阶段:将预处理后的图像输入到深度网络模型提取图像的特征映射并结合注意力机制的全局池化操作得到特征向量;损失计算及训练优化阶段:根据所述特征向量和目标ID标签分别计算三种损失函数损失的值,根据损失的值计算深度卷积神经网络参数的梯度对模型进行优化;测试评估阶段:对训练完成的深度网络模型进行测试并根据测试结果调整超参数。本发明还提供了一种用于重识别的超球面特征嵌入系统,包括:图像预处理模块、特征提取模块、超球面特征嵌入模块和测试模块。
-
公开(公告)号:CN117010026A
公开(公告)日:2023-11-07
申请号:CN202310797647.0
申请日:2023-06-30
Applicant: 北京交通大学
Abstract: 本发明提供了一种基于联邦知识网络的异常人物关系检测方法。该方法包括:可信第三方生成公钥、私钥和计算密钥,各个社区监控终端提取图像中的人脸特征,将利用公钥加密后的人脸特征对发送给中心服务器,中心服务器在密文条件下计算人脸特征对之间的欧式距离,利用可信第三方构建全局人物关系知识网络;社区监控终端捕获图像并检测亲密关系,将加密的待查询人脸特征对发送给服务器,服务器计算待查询人脸特征对与全局人物关系知识网络中人脸特征对之间的距离,利用可信第三方判断是否存在人员异常关系。本发明方法通过密钥分发、知识网络构建和异常关系检测实现了有效的关系识别和异常监测,有助于保护社区监控终端成员的安全与隐私。
-
公开(公告)号:CN113496481B
公开(公告)日:2023-11-07
申请号:CN202110550635.9
申请日:2021-05-20
Applicant: 北京交通大学
IPC: G06T7/00 , G06T5/00 , G06V10/44 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明提供了一种少样本胸部X‑Ray图像的辅助检测方法。该方法包括:采集胸部的CXR图像,通过自适应的X‑Ray图像降噪模块对所述CXR图像进行图像预处理,利用预处理后的X‑Ray图像组成训练集和验证集;构造基于迁移学习的量子卷积神经网络,利用训练集和验证集对基于迁移学习的量子卷积神经网络和分类网络模型进行迭代优化处理,将迭代优化处理后的分类网络模型与量子卷积神经网络进行融合,得到辅助检测网络模型;利用辅助检测网络模型对待诊断的胸部的CXR图像进行诊断,输出待诊断的胸部的CXR图像的诊断结果。本发明通过融合基于迁移学习的分类网络模型与量子卷积神经网络得到辅助检测网络模型,结合了不同模型的优势,对检测准确率大大提升。
-
公开(公告)号:CN116049816B
公开(公告)日:2023-07-25
申请号:CN202310027342.1
申请日:2023-01-09
Applicant: 北京交通大学 , 深信服科技股份有限公司
Abstract: 本发明提供了一种基于区块链可验证安全的联邦学习方法。该方法包括:各个参与方在本地训练模型,将得到的本地模型上传至区块链,参与方从区块链上下载其余参与方上传的本地模型,对其本地模型通过模型相似度算法检测并依据本地数据评分,确保本地模型不会受到攻击者的投毒攻击,将评分结果上传至区块链上;智能合约对所有参与方上传的评分结果进行统计和评分,择优选择精度较高的多个本地模型聚合,得到最新的全局模型,智能合约根据当前轮次的各个参与方行为进行信誉评分,将信誉评分结果存储在区块链上。本发明方法通过让参与方依据欧氏距离计算模型相似度,可以同时检测出联邦学习中的多种投毒攻击,可以最大程度保证系统的鲁棒性和可靠性。
-
公开(公告)号:CN114140469B
公开(公告)日:2023-06-23
申请号:CN202111462219.X
申请日:2021-12-02
Applicant: 北京交通大学
IPC: G06T7/10 , G06N3/0464 , G06N3/084
Abstract: 本发明提供了一种基于多层注意力的深度分层图像语义分割方法。该方法包括:构建图像语义分割模型,对训练图像进行预处理,得到包括训练图像的特征图的分割图像;通过图像语义分割模型使用多个不同大小的池化核对特征图进行池化处理,使用注意力函数对每一池化核层处理后得到的特征图进行注意力的计算,利用添加权重的交叉熵损失函数计算损失,使用损失进行梯度反向传播,得到训练好的图像语义分割模型;利用训练好的图像语义分割模型进行待分割的图像的语义分割处理。本发明图像语义分割模型在分层网络中添加了注意力机制,获得了全局的上下文信息,抑制无用的噪声。使用加权的交叉熵损失函数,使每个神经元获得到全局的上下文信息。
-
公开(公告)号:CN116229586A
公开(公告)日:2023-06-06
申请号:CN202211434445.1
申请日:2022-11-16
Applicant: 北京交通大学
IPC: G06V40/50 , G06V40/16 , G06V10/82 , G06N3/0464
Abstract: 本发明提供一种轻量型图像数据隐私保护装置及方法,属于网络安全技术领域,包括:图像特征编码器模块,用于从图像中高效的捕获特征信息,将其转化为一系列的特征图;图像匿名化模块,用于消除特征图中包含的隐私信息,生成匿名化后的特征图;图像生成模块,用于对匿名化后的特征图进行重构,最终生成匿名化后的图像。本发明减少了参数量,减少了模型的计算量,节省了训练时间,可高效准确的提取图像特征,提升了模型的特征提取能力;使用贪心的思想,实现了对图像特征的匿名化,可以高效的将平均图像特征图重构出去身份后的图像,重构出的图像不仅实现了图像的隐私保护,而且还保留了部分与身份无关的图像信息。
-
公开(公告)号:CN116168418A
公开(公告)日:2023-05-26
申请号:CN202310043891.8
申请日:2023-01-29
Applicant: 北京交通大学
IPC: G06V40/10 , G06V10/42 , G06V10/80 , G06V10/82 , G06V10/764 , G06N3/0455 , G06N3/084
Abstract: 本发明提供了一种图像的多模态目标感知与重识别方法。该方法包括:对跨模态图像数据进行预处理得到分块向量序列,通过ME学习跨模态图像数据的模态信息,将跨模态图像数据的分块数据、位置信息和模态信息融合在一起得到序列化图像数据,并输入到ViT模型,ViT模型输出跨模态图像数据的特征信息,计算模态感知增强损失值,根据损失值进行反向传播调整模型参数,得到训练好的目标重识别模型,利用该模型对待识别的行人图像进行跨模态目标重识别。本发明方法将可学习模态嵌入引入网络,直接编码模态信息,可以有效地用于缓解异构图像之间的差距,实现对跨模态图像的目标感知和重识别。
-
-
-
-
-
-
-
-
-