-
公开(公告)号:CN114350997B
公开(公告)日:2023-01-20
申请号:CN202111493781.9
申请日:2021-12-08
Applicant: 中国科学院上海应用物理研究所 , 上海核工程研究设计院有限公司
Abstract: 本发明提供一种铀钼铌合金燃料芯块及其制备方法以及应用,所述方法包括以下步骤:S1:通过氢化去氢的方法将金属铀锭制备成铀粉末;S2:向铀粉末中添加钼粉末和铌粉末并混合均匀,形成一种铀钼铌金属粉末,其中钼的含量为6‑8wt.%,铌的含量为1‑2wt.%,然后在5‑8吨压力下将铀钼铌金属粉末压制成毛坯;S3:将毛坯放入氩气气氛的高温加热炉中,以7‑10℃/min的速度升温到1200‑1450℃,保温1.5h‑3h,再以7‑10℃/min的速度降温到800‑1000℃,保温3‑5h,随炉冷却,最终获得γ‑U的铀钼铌合金燃料芯块。本发明的制备工艺周期短,实现了γ相稳定的铀钼铌合金的制备。
-
公开(公告)号:CN112174670A
公开(公告)日:2021-01-05
申请号:CN202011057638.0
申请日:2020-09-30
Applicant: 中国科学院上海应用物理研究所
IPC: C04B35/532 , C04B35/622 , C04B38/00 , G21C3/07 , G21C3/04 , F28D20/02
Abstract: 本发明涉及一种石墨材料致密化改性的制备方法包括将天然鳞片石墨、人造石墨和纳米级炭黑混合得到干粉混料;将粘结剂添加到干粉混料中混捏均匀后得到预制石墨粉;压制预制石墨粉形成坯体;将坯体进行炭化处理和石墨化处理得到致密化石墨材料;纳米级炭黑的质量为天然鳞片石墨、人造石墨和粘结剂的总质量的1‑20%。本发明得到的致密化石墨材料,其平均孔径为50‑500nm。本发明的致密化石墨材料的应用,其在反应堆中作为燃料元件燃料层的基体材料、在反应堆中作为燃料元件外壳层的材料、或在相变储热元件中作为封装材料。根据本发明的致密化石墨材料,平均孔径小、抗熔盐浸渗能力高、热导率高、热膨胀系数低。
-
公开(公告)号:CN112111251A
公开(公告)日:2020-12-22
申请号:CN202011183697.2
申请日:2020-10-29
Applicant: 中国科学院上海应用物理研究所
IPC: C09K5/06
Abstract: 本发明涉及一种石墨泡沫增强导热的高温无机盐相变储热元件的组装方法,其包括将共晶盐相变材料和石墨泡沫导热骨架材料无接触地封装于高压反应釜中,加热待共晶盐相变材料熔融后使石墨泡沫导热骨架材料与共晶盐相变材料接触;通入惰性气体加压至0.1‑1.5MPa使得熔融的共晶盐相变材料浸渗到石墨泡沫导热骨架材料的孔腔内;或抽真空至‑60~‑100KPa,以负压形式使得熔融的共晶盐相变材料填充至石墨泡沫导热骨架材料的孔腔内以得到石墨泡沫增强导热的高温无机盐相变储热元件。本发明还涉及一种上述的组装方法形成的储热元件。本发明提供的高温相变储热元件能够更好地兼容并具有良好的热循环性能。
-
公开(公告)号:CN112102968A
公开(公告)日:2020-12-18
申请号:CN202010791013.0
申请日:2020-08-07
Applicant: 中国科学院上海应用物理研究所 , 上海核工程研究设计院有限公司
Abstract: 本发明提供一种高热导燃料芯块及其制备方法,包括以下步骤:S1、提供一种UO2单晶;S2、UO2单晶涂层包覆;S3、粉体预处理:将包覆型UO2单晶颗粒以及Zr合金粉体进行加热预处理;S4、粉体混合:将步骤S3制备的包覆型UO2单晶颗粒筛分成粒径大小不同的两组,先将大尺寸UO2单晶颗粒、Zr合金粉体与烧结剂按照一定的体积比例放入混料罐内,喷洒一定量的粘结剂密封混合,然后将剩余的小尺寸UO2单晶颗粒与Zr合金粉体混合后一起搅拌均匀;S5、生坯压制;以及S6、高温烧结,即可获得所述高热导燃料芯块。根据本发明提供的一种高热导燃料芯块及其制备方法,可明显改善燃料芯块的热导率,进而提升燃料芯块的安全性。
-
公开(公告)号:CN109545414B
公开(公告)日:2020-06-05
申请号:CN201811487028.7
申请日:2018-12-06
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明涉及一种燃料颗粒的制备方法,包括提供球形的核芯;在所述核芯上通过化学气相沉积形成多孔碳化硅层或碳化锆层,得到多孔碳化硅层或碳化锆层包覆颗粒;将多孔碳化硅层或碳化锆层包覆颗粒浸泡在活性液中进行真空浸渍,得到化合物填充多孔碳化硅层或碳化锆层包覆颗粒;使得化合物填充多孔碳化硅层或碳化锆层包覆颗粒中的化合物分解形成可燃中子毒物氧化物或氧化钍,得到燃料颗粒。本发明还提供由上述制备方法得到的核壳型燃料颗粒。本发明通过在核芯外包覆的碳化硅层或碳化锆层来提高燃料颗粒的安全性,即堆安全性;同时通过填充在碳化硅层或碳化锆层中的可燃中子毒物氧化物或氧化钍来提高堆经济性。
-
公开(公告)号:CN109360671B
公开(公告)日:2020-05-08
申请号:CN201811243467.3
申请日:2018-10-24
Applicant: 中国科学院上海应用物理研究所
IPC: G21C21/02
Abstract: 本发明涉及一种燃料元件的制备方法,包括以下步骤:提供3D打印原料,该3D打印原料为陶瓷和/或金属;通过3D打印设备利用3D打印原料打印球壳,该球壳的顶端具有一个开口,以提供无燃料外壳模具;提供基体材料,将燃料颗粒和基体材料装于无燃料外壳模具,得到燃料预成型体;利用3D打印原料将燃料预成型体的球壳的开口封住,得到燃料成型体;对燃料成型体进行热处理,得到燃料元件,该燃料元件包括由燃料颗粒和基体材料混合形成的燃料区和由3D打印原料形成的无燃料外壳。本发明通过3D打印成型技术来制备燃料元件,不仅工艺简单,成形速度快,而且提高了原材料利用率,极大地降低了燃料元件的制备成本。
-
公开(公告)号:CN106128515B
公开(公告)日:2019-10-18
申请号:CN201510848589.5
申请日:2015-11-27
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明公开了一种燃料元件、其制备方法及其用途。本发明的燃料元件,其为球体,由内而外依次为同心的燃料层、无燃料层和外壳层;所述的无燃料层的材料为本领域常规的基体材料。该燃料元件具有密度小、具备可缓解燃料层在服役过程中发生的肿胀的无燃料层、不易破裂、功率密度高、散热快等优点,且外壳层结构致密、抗压强度高、能够防止熔盐浸渗和裂变产物的释放,可用于反应堆;该制备方法简单,成本较低。
-
公开(公告)号:CN108109710B
公开(公告)日:2019-10-01
申请号:CN201711276155.8
申请日:2017-12-06
Applicant: 中国科学院上海应用物理研究所
IPC: G21C21/02
Abstract: 本发明涉及一种制备熔盐反应堆燃料盐的装置,包括与反应系统连接的供气系统和尾气处理系统,该反应系统包括容置有还原性金属的反应釜和用于对反应釜进行加热的反应加热炉,该供气系统包括向反应釜中提供惰性气体和/或UF6气体的供气设备,该尾气处理系统包括用于吸附反应釜中过量的UF6气体和尾气的处理设备。本发明还提供一种利用上述装置制备熔盐反应堆燃料盐的方法。本发明直接在熔盐中还原UF6制备UF3和/或UF4来获得燃料盐,简化燃料盐的生产流程,具有工艺流程短、操作简单灵活、无放射性粉末操作、节约原料成本、节约能源等诸多优点。
-
公开(公告)号:CN106644722B
公开(公告)日:2019-06-14
申请号:CN201611245256.4
申请日:2016-12-29
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明提供一种包覆燃料颗粒的压碎强度的测试方法,包覆燃料颗粒由内而外依次包括:燃料核心、缓冲层、内致密热解碳层、陶瓷球壳、外致密热解碳层,所述方法包括以下步骤:S1:对所述包覆燃料颗粒进行第一次高温氧化处理,以去除外致密热解碳层;S2:对去除了外致密热解碳层的包覆燃料颗粒的陶瓷球壳进行激光打孔;S3:对已完成激光打孔的包覆燃料颗粒进行第二次高温氧化处理,以去除内致密热解碳层和缓冲层;以及S4:在材料试验机上测试经过上述处理的包覆燃料颗粒的压碎强度值。根据本发明,避免了现有技术中的半球法和圆环法的固有误差缺陷,提供了一种制样简单快捷,能批量处理,最重要的是测量误差大大降低的压碎强度的测试方法。
-
公开(公告)号:CN109872826A
公开(公告)日:2019-06-11
申请号:CN201910092415.9
申请日:2019-01-30
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明公开了一种用于反应堆的燃料元件及其制备方法,燃料元件从内到外依次包括燃料区和无燃料区;燃料区包括包覆燃料颗粒;燃料区和无燃料区均包括基体材料;基体材料的原料包括石墨、粘结剂和固化剂;石墨与固化剂的质量比为1:0.1~0.3。该燃料元件采用注模方法制得,且组装过程无需压力,避免压制过程中包覆燃料颗粒间相互挤压而破裂,有效降低燃料元件中包覆燃料颗粒的破损率,包覆燃料颗粒装载量可调,并简化了基体材料的制备工艺,制备方法简单。通过筛选合适的固化温度和固化剂用量可提高固化效率,缩短固化时间,有效提高制备效率,成本较低。
-
-
-
-
-
-
-
-
-