-
公开(公告)号:CN109859106A
公开(公告)日:2019-06-07
申请号:CN201910079727.6
申请日:2019-01-28
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于自注意力的高阶融合网络的图像超分辨率重建方法,其特征在于,包括如下步骤:1)建立重建模型;2)CNN网络特征提取;3)自注意力模块中的自注意力支路特征提取;4)自注意力模块中的主干支路特征提取;5)特征的高阶融合;6)图像重建。这种方法能有效的解决因预处理带来的额外计算量,且能恢复出更多的纹理细节来重建出高质量的图像。
-
-
-
公开(公告)号:CN107292855A
公开(公告)日:2017-10-24
申请号:CN201710651882.1
申请日:2017-08-02
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种结合自适应非局部样本和低秩的图像去噪方法,首先用对数变换将图像转换到对数域,将乘性噪声模型转换成加性噪声模型;将图像分块并且按照相似度分组,得到具有相似块的图像组;然后对图像组做低秩逼近处理,得到初始的估计值;再对初始的估计值用自适应非局部样本模型处理,得到对数域恢复结果;最后用指数变换将对数域图像还原到实数域并且进行修正,得到最终去噪图像。实验结果表明,本发明对乘性噪声有较好的鲁棒性,针对含有乘性噪声的图像不仅能得到很好的峰值信噪比和结构相似度,还较好地改善图像的视觉质量。
-
公开(公告)号:CN107220594A
公开(公告)日:2017-09-29
申请号:CN201710316806.5
申请日:2017-05-08
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于相似度保留堆叠自编码器的人脸姿态重建与识别方法,其特征是,包括如下步骤:1)多角度人脸图像的姿态角度步进减小;2)目标姿态特征提取;3)构建相似度保留自编码器的总损失函数;4)堆叠相似度保留自编码器;5)训练并微调网络;6)重建与识别:将重建好的正脸图像和网络的最高隐含层特征分别使用线性判别分析法,即LDA法进行降维来提取具有判别性的人脸特征,并用最近邻分类器完成人脸识别。这种方法能够消除人脸图像的姿态角度偏转影响、能够提取到人脸对于多姿态变化更具鲁棒性的特征,且提取到的姿态特征能和原始正脸图像的特征相匹配,从而提高识别率。
-
公开(公告)号:CN107180248A
公开(公告)日:2017-09-19
申请号:CN201710436670.1
申请日:2017-06-12
Applicant: 桂林电子科技大学
CPC classification number: G06K9/6267 , G06K9/6256 , G06N3/084
Abstract: 本发明公开了基于联合损失增强网络的高光谱图像分类方法,其特征是,包括如下步骤:1)PCA降维;2)空间领域块提取;3)编码路径特征提取;4)分类任务训练目标建立;5)解码路径特征提取与重建;6)网络联合训练;7)高光谱测试分类。这种方法可在同一网络结构下,通过端到端的训练方式,联合学习重建损失及分类判别损失函数,从而充分利用高光谱图像的空谱信息,自动削弱CNN对不重要特征变量的学习,以此来降低高光谱分类模型的复杂度,同时,减少高光谱图像分类方法对标签样本的依赖性、提升分类精度。
-
-
公开(公告)号:CN104504681A
公开(公告)日:2015-04-08
申请号:CN201410685202.4
申请日:2014-11-25
Applicant: 桂林电子科技大学
IPC: G06T7/00
CPC classification number: G06T7/11
Abstract: 本发明公开了一种聚类失真度最小的阈值分割方法,其首先根据设定的阈值,将图像分割为目标和背景两部分;然后计算根据该设定阈值进行分割时,目标和背景两部分图像中值聚类分割失真度的总和;对图像所有的灰度级重复上述过程,找出分割失真度总和最小值所对应的灰度级即为所求阈值。采用本发明方法进行分割更精准,分割失真度最小。
-
公开(公告)号:CN104504118A
公开(公告)日:2015-04-08
申请号:CN201410845467.6
申请日:2014-12-31
Applicant: 桂林电子科技大学 , 桂林宇辉信息科技有限责任公司
CPC classification number: G06F9/448
Abstract: 本发明公开了一种工作流建模数据的存储和读取方法,所述方法包括基于XPDL的基本图形转换成XML文档和XML文档转换成基于XPDL的基本图形;所述基于XPDL的基本图形转换成XML文档,包括如下步骤:(1)通过加载动态连接库把需要的建模图形元素加载到建模工具中。(2)拖拽图形元素到建模编辑区域,建模工具自动创建与之对应的组件。(3)将创建好的组件序列化,生成基于XPDL的基本图形相对应的XML文档。所述XML文档转换成基于XPDL的基本图形,包括如下步骤:(1)通过反序列化操作,把XML文档转化为组件。(2)通过调用组件绘制图形元素的方法,把组件转化为基本图形。本发明是一种高效率的工作流建模数据存储和读取方法。
-
公开(公告)号:CN104268843A
公开(公告)日:2015-01-07
申请号:CN201410548336.1
申请日:2014-10-16
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于直方图修正的图像自适应增强方法。它首先计算原直方图的标准差,并与原直方图相加,获得一次修正的直方图;其次在一次修正直方图的基础上进行自适应的伽马矫正,得到二次修正的直方图;最后在二次修正直方图的基础上应用传统直方图增强的方法得到目标增强的图像。本发明的优点是:1)适应性强,适用于各类图像的自适应增强;2)增强处理过程中信息丢失少,能有效保持图像细节,本发明增强的图像能保留原始图像绝大部分细节信息;3)避免图像亮度的过度改变,对各类图像,本发明都能有效保留图像的原始特点,避免图像亮度的过改变。
-
-
-
-
-
-
-
-
-